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1 Introduction and overview

Maximally supersymmetric gauge theory in four spacetime dimensions — N = 4 super

Yang-Mills (SYM) — is an interacting quantum field theory with a host of useful features:

It has a unique massless action with only a few adjustable parameters. Perturbative cal-

culations typically show many cancellations such that, e.g., the model’s classical conformal

symmetry is preserved at the quantum level due to the absence of running couplings. Fur-

thermore, a lot of evidence has accumulated in favour of the AdS/CFT correspondence [1]

claiming that the model is exactly dual to a string theory on an AdS background.
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On top of these features, calculations in the planar alias the large-Nc limit for a U(Nc)

gauge group have turned out to produce surprising final results in many cases. Simplifica-

tions are certainly related to the absence of string interactions in the dual string theory,

yet it takes more to explain most of the observed mysteries. Once fully understood and

exploited, we hope that calculations at high perturbative orders and even at finite coupling

become tractable. For instance, the spectrum of anomalous dimensions of local operators

appears to be governed by a certain integrable model [2–4] which makes calculations very

efficient, see e.g. the reviews [5]. Integrability is usually synonymous with the existence of

an infinite dimensional algebra which enlarges the manifest symmetries of the model and

which (almost) completely constrains the dynamics. In this case superconformal symmetry

apparently extends to its loop algebra whose quantisation is a Yangian algebra [4, 6].

A different field of investigation in N = 4 SYM which has advanced substantially in re-

cent years is the study of on-shell scattering amplitudes. These are particularly important

because of their relations to scattering amplitudes in QCD (for phenomenological purposes)

and in N = 8 supergravity through the KLT relations (for demonstrating finiteness of a

particular theory of quantum gravity). In particular, the twistor space approach [7, 8]

(see [9–11] and references therein for further accounts) following from the ideas of Pen-

rose [12] has sparked many new investigations leading to a much better understanding.

Subsequently, recursion relations for all tree-level amplitudes have been set up [13] and

their on-shell superspace version [14–17] solved explicitly [18]. Moreover, amplitudes at

loop level can be computed efficiently and reliably through the methods of generalised

unitarity whose basic framework was introduced in [19, 20] and further developed in [21];

see [22] for a useful review. Among others, these enabled the computation of the planar

amplitudes with four legs up to four loops and beyond [23–27] as well as amplitudes with

six or more legs at two loops [28].

It is well known that scattering amplitudes for massless particles are problematic be-

cause asymptotic states cannot be defined properly: a single massless particle can decay

into an unbounded number of massless particles with collinear momenta. This manifests it-

self in the appearance of infra-red divergences at loop level when integrating over collinear

momentum configurations. The divergences call for the introduction of some regulator,

most commonly a minimal subtraction scheme in dimensional regularisation or reduction

to d = 4 − 2ǫ spacetime dimensions. The resulting amplitudes will then have singularities

as ǫ → 0, typically two factors of 1/ǫ per loop level. The structure of IR divergences is

understood reasonably well: they combine into an exponent which can be factored out from

the amplitude leaving a finite part behind [29]. The form of the exponent is constrained by

field theory and symmetry considerations. The same would be true for the finite remainder

function, however, some symmetries, such as special conformal transformations, may have

been deformed or broken by the introduction of the regulator.

Some structural simplifications come about in the planar limit: There the IR di-

vergences are determined through a single function of the coupling, the so-called cusp

anomalous dimension [30], see also [24].1 Interestingly, this very same cusp anomalous di-

1The subleading collinear anomalous dimension is scheme dependent and not a good observable on its
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mension can also be computed from anomalous dimensions of local operators which in turn

are governed by the above mentioned integrable model, see in particular [32]. One might

therefore wonder if there are further connections between planar scattering amplitudes and

the integrable structures for planar anomalous dimensions.

Indeed, the unitarity construction of higher-loop planar amplitudes shows some sur-

prises: Many of the integrals that could in principle contribute to the unitarity construction

do not appear in practice. Only such integrals with certain conformal weights appear to

have non-zero prefactors [25, 27, 33]. It is however not the standard conformal symmetry

which leads to these restrictions, but rather a conformal symmetry acting on momentum

space. Curiously, Wilson loops in this dual momentum space were seen to be equivalent to

certain scattering amplitudes [34–37], see also the reviews [38]. Later the dual conformal

symmetry was extended to superconformal symmetry and shown to apply to all tree level

scattering amplitudes [15, 39]. In string theory the appearance of such dual superconformal

symmetries can be explained by a supersymmetric T-duality transformation which turns

out to map the string model to itself [34, 40]. The superconformal symmetries of the dual

model become the dual superconformal symmetries of the original model. Moreover, the

two sets of superconformal symmetries form two inequivalent superconformal subalgebras

of the loop algebra representing classical string integrability [40–42]. Alternatively one

can say that the loop algebra alias integrability results as the closure of the two sets of

superconformal symmetries. On the gauge theory side, the realisation of integrability alias

Yangian symmetry for tree-level scattering amplitudes was derived in [43] and shown to be

self-consistent.

All of these developments together point towards integrability of planar scattering am-

plitudes in N = 4 SYM, not only at tree level, but at all loops and even non-perturbatively.

This suggests that one might be able to compute all planar scattering amplitudes very effi-

ciently and without the need for lengthy field theory or generalised unitarity calculations.

Could there be some differential or integral equation determining the finite part of scatter-

ing amplitudes?

Before such an equation can be established, several problems have to be overcome:

The regulator for the IR divergences breaks the special conformal symmetries. E.g. in

dimensional regularisation the dimensionality of spacetime is d = 4 − 2ǫ while conformal

symmetry requires exactly d = 4. Consequently conformal symmetry for scattering am-

plitudes is either broken beyond repair or it is at least obscured at loop level. For dual

conformal symmetry at loop level the second option seems to apply; its breakdown can be

formulated as an anomaly originating from UV divergences for the dual Wilson loops [36].

One may expect the same to be true for the original conformal symmetry. The N = 4

model is known to be exactly conformal at the quantum level. Conformal symmetry per-

sists even in the presence of the UV divergences accompanying the anomalous dimensions

of local operators. The main difficulty for scattering amplitudes rests in the IR nature of

the divergences whose structure is less clear than for UV divergences.

The above discussion hides two important points at tree level which appear to paint

a pessimistic picture. Firstly, conformal symmetry is subtle and even at tree level it does

own. For a recent discussion of these subleading singularities see [31].

– 3 –
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not strictly hold: Amplitudes were shown to be conformal when the external momenta

are in a general position. Whenever two momenta become collinear, however, conformal

symmetry becomes anomalous. A related anomaly is made obvious by going to the twistor

space representation of the amplitudes [9, 10].2 On a second thought this subtlety is not

very surprising because it is precisely the collinear momenta which cause the IR diver-

gences which in turn lead to the conformal anomaly. Only at tree level can collinearities

be avoided through a choice of external momenta while at loop level internal momenta are

integrated over and collinearities become inevitable. Secondly, conformal and dual con-

formal symmetry together are not even sufficient to fix tree level amplitudes completely.

The basis of tree amplitudes introduced in [18] or similarly in the twistor space picture is

(almost, see above) invariant under both symmetries. Consequently all linear combinations

are invariant as well and symmetry alone does not determine the correct linear combination

for the physical scattering amplitude.3 Only additional physical input, such as a correct

set of singularities, appears to fix the right coefficients, see also the very recent work [11]

as well as [44] which appeared after an earlier version of the present work.

In this paper we propose a resolution to the problems of conformal symmetry at tree

level discussed above: The naive action of infinitesimal conformal transformations on scat-

tering amplitudes is not complete. It needs to be supplemented by correction terms which

cure the collinear anomaly at tree level. We also believe that similar corrections can re-

move the anomalies at loop level and thus render scattering amplitudes exactly conformal,

albeit using a deformed representation. The proposed corrections act in similar fashion

as the symmetry generators of the integrable spin chain for anomalous dimensions. Most

importantly, the corrections have the ability to change the number of legs of scattering

amplitudes. Such generators cannot act on individual scattering amplitudes, but rather

they must act on the generating functional of all amplitudes.

Altogether this paints a consistent picture in view of the problems introduced by mass-

less asymptotic states:4 The number of massless asymptotic particles is not a well-defined

quantity. Hence it is natural to consider the generating functional of scattering amplitudes

(which can be viewed as the scattering operator) rather than individual scattering ampli-

tudes with a fixed number of legs. The purpose of the correction terms is to take into

account the overcounting of states in the Fock space where momenta become collinear.

The paper is organised as follows: We start in section 2 by presenting how free super-

conformal symmetry acts on scattering amplitudes and compare it to the quantum action

on local operators. We conclude that the action on amplitudes may require corrections

whose qualitative form is derived by analogy with local operators. In section 3 we deter-

mine these corrections by demanding exact superconformal invariance of MHV amplitudes.

We then show the closure of the superconformal algebra modulo gauge transformations in

section 4. Finally, in section 5 we show invariance of all tree amplitudes under the deformed

superconformal representation. We summarise our results in section 6 and give an outlook.

2There are two subtleties here: a) the twistor space formulation requires the signature of spacetime to

be (2, 2) and not (3, 1); b) the twistor transformation itself is singular at collinearities.
3We thank James Drummond, Johannes Henn and Emery Sokatchev for explanations.
4We thank David Skinner for pointing this out and for discussions.
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Figure 1. Structure of the superconformal algebra psu(2, 2|4). The generators are plotted according

to their scaling dimensions (vertical) and their helicities (horizontal).

2 Representation of superconformal symmetry

In this section we review and discuss the representation of superconformal symmetry on

scattering amplitudes. By means of analogy to local operators we propose how to qualita-

tively deform the free representation to an interacting one.

2.1 Free representation

Scattering amplitudes in N = 4 SYM are most conveniently expressed in the spinor helicity

superspace [45]: The light-like momentum p of each external particle is first converted to

a bi-spinor paȧ which can consequently be written as a product paȧ = λaλ̄ȧ. Here λa

and λ̄ȧ are mutually conjugate bosonic spinors of the Lorentz algebra with a, b, . . . = 1, 2

and ȧ, ḃ, . . . = 1, 2. The decomposition is unique up to a complex phase λa → eiϕλa and

λ̄ȧ → e−iϕλ̄ȧ. Furthermore, it is advantageous to compute scattering amplitudes for the

superfield [46]

Φ(λ, λ̄, η) = G+(λ, λ̄) + ηAΓA(λ, λ̄) +
1

2
ηAηBSAB(λ, λ̄)

+
1

6
εABCDηAηBηC Γ̄D(λ, λ̄) +

1

24
εABCDηAηBηCηDG−(λ, λ̄), (2.1)

where G±, Γ/Γ̄ , S are the on-shell gluons, fermions and scalars with definite helicity. By

picking a suitable component in the expansion of fermionic spinors ηA, A,B, . . . = 1, 2, 3, 4,

of su(4) one can select the desired type of external particle for each leg. The scattering

amplitude for n external particles is thus a superspace function

An(λ1, λ̄1, η1, . . . , λn, λ̄n, ηn). (2.2)

The superconformal algebra psu(2, 2|4) can be represented in a simple fashion on such

scattering amplitudes. We shall denote the superconformal generators through Gothic

letters Jα. More concretely, it is generated by Lorentz rotations L, L̄, internal rotations

R, momentum generators P, special conformal generators K, the dilatation generator D

as well as supercharges Q, Q̄ and special conformal supercharges S, S̄, see figure 1. Using

the spinor helicity superspace coordinates the representation of the superconformal algebra

– 5 –
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can be written in a very compact fashion [7] (cf. section 4)

La
b = λa∂b −

1

2
δa
b λc∂c, L̄ȧ

ḃ = λ̄ȧ∂̄ḃ −
1

2
δȧ
ḃ
λ̄ċ∂̄ċ,

D =
1

2
∂cλ

c +
1

2
λ̄ċ∂̄ċ, RA

B = ηA∂B − 1

4
δA
BηC∂C ,

QaB = λaηB , SaB = ∂a∂B ,

Q̄ȧ
B = λ̄ȧ∂B , S̄B

ȧ = ηB ∂̄ȧ,

Paḃ = λaλ̄ḃ, Kaḃ = ∂a∂̄ḃ,

(2.3)

where we abbreviate ∂a = ∂/∂λa, ∂̄ȧ = ∂/∂λ̄ȧ and ∂A = ∂/∂ηA. Furthermore, let us

introduce a central charge C and the helicity charge B which would extend the algebra to

u(2, 2|4). Their representation reads

C = ∂aλ
a − λ̄ċ∂̄ċ − ηC∂C = 2 + λa∂a − λ̄ċ∂̄ċ − ηC∂C , B = ηC∂C . (2.4)

In fact, this is only one half of the story: The energy component in paḃ = λaλ̄ḃ

is manifestly positive. However, reasonable scattering amplitudes require at least two

particles with negative energy. For such particles we must set paḃ = −λaλ̄ḃ. The negative

energy representation is the same as the above (2.3), where the sign of all instances of

λ̄ is flipped. In most places this replacement is sufficient and can be done mechanically.

We shall thus treat all particles as though their energy is positive and point out whenever

negative energy particles make an essential difference (cf. section 3.3).

The representation on tree-level scattering amplitudes in N = 4 SYM takes the stan-

dard tensor product form

Jα =
n∑

k=1

Jk,α. (2.5)

Here Jk,α is the representation of the conformal symmetry generator Jα on the k-th leg

(λk, λ̄k, ηk) of An as specified in (2.3). Invariance of An is the statement

JαAn = 0. (2.6)

In [43] a Yangian representation on tree-level scattering amplitudes in N = 4 SYM was

proposed. The action of the level-one Yangian generators Ĵα follows the standard Yangian

coproduct rule for evaluation representations with homogeneous evaluation parameters

Ĵα =
1

2
fβγ

α

∑

1≤k<ℓ≤n

Jk,βJℓ,γ . (2.7)

This representation was shown to be compatible with cyclicity provided that the amplitude

is invariant under superconformal symmetry. Making use of dual superconformal covari-

ance [15, 39] and the Serre relations one can further deduce that the tree-level amplitudes

are invariant under the complete Yangian algebra, ĴαAn = 0 [43].

– 6 –
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Figure 2. Comparison of single-trace local operators and colour-ordered scattering amplitudes

2.2 Higher-loop representation on local operators

This representation is the direct analog of the leading-order representation on local opera-

tors when Jk,α is the representation on the k-th site of the spin chain. The main difference

is that Jk,α is a differential operator for scattering amplitudes while it is a spin operator for

local operators.5 In fact, the structures of single-trace local operators and colour-ordered

scattering amplitudes are very much alike as illustrated in figure 2.

It is well-known that the representation of the superconformal algebra on local oper-

ators is deformed at loop level. This is required to incorporate the effects of anomalous

dimensions; after all the dilatation generator measures conformal dimensions. Alternatively

one can say that the deformation is due to regularisation of UV divergences. While the

tree-level generators Jk,α act on a single site of the local operator and map it back to itself,

the structure of the loop corrections is qualitatively different: They can act on several sites

at the same time and map them back to themselves. Moreover, they are dynamic in the

sense that they can change the number of sites, e.g. map a single site to two sites or vice

versa [49]. This implies that local operators with well-defined scaling dimension do not have

a well-defined number of component fields, but they are rather linear combinations of spin

chains with different lengths. Note that some of these length-changing effects are known

as “non-linear” or interacting realisations of the symmetry. For example, it is well-known

that a supercharge Q acting on a fermion can produce the commutator of two scalars [49]

even in the classical theory.

The generic structure of the perturbative representation Jα(g) for some generator Jα

around the free representation (J0)α = (J
(0)
1,1)α reads

Jα(g) =

∞∑

m,n=1

∞∑

ℓ=0

g2ℓ+m+n−2(J(ℓ)
m,n)α. (2.8)

This structure follows from the structure of planar Feynman graphs [3, 49], and it is

depicted in figure 3. An ℓ-loop contribution J
(ℓ)
m,n which acts on m adjacent sites of the

chain and which replaces them by n adjacent sites is of order g2ℓ+m+n−2. This is because

an elementary interaction of O(g) connects three sites; adjacency is due to the planar limit.

5Without going into details, the oscillator representation introduced in [47] and applied in [48] is prac-

tically equivalent to the above representation.
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Figure 3. Expansion of quantum symmetry generators for local operators.

2.3 Higher-loop representation on scattering amplitudes

Now one could imagine that similar deformations apply to the representation of conformal

symmetry on scattering amplitudes. Clearly the origin of the corrections is different: for

local operators it is due to UV divergences whereas for scattering amplitudes it is due to

IR divergences. This means that perhaps the representations are not exactly equivalent.

Nevertheless one would expect the structural constraints to be the same because they

merely originate from the structure of Feynman graphs (and the planar limit).

The action of deformations which involve several legs, but preserve their number should

be self-evident. But what does it mean to change the number of legs? In particular, how

can this be possible at all if each leg has a well-defined particle momentum? How can

invariance of a scattering amplitude be interpreted? First of all, if the number of legs

changes by the action of symmetry generators, then a single n-leg amplitude cannot be

invariant by itself; it only makes sense to talk about invariance of all amplitudes at the

same time.

Before we introduce a proper framework for the treatment of length-changes, let us

discuss their effects qualitatively. Suppose a generator consists of the terms depicted in

figure 3

J(g) = J0 + gJ
(0)
1,2 + gJ

(0)
2,1 + g2J

(1)
1,1 + g2J

(0)
1,3 + g2J

(0)
2,2 + g2J

(0)
3,1 + . . . (2.9)

The first term is the free generator J0 = J
(0)
1,1. The contributions J

(0)
1,2,J

(0)
1,3 increase the

number of legs by one or two, respectively, while J
(0)
2,1,J

(0)
3,1 decrease it. The symbol J

(1)
1,1

represents the loop correction to the free generator and J
(0)
2,2 maps two legs to two legs.

Suppose further that the set of amplitudes can be written as the linear combination

A(g) =
∞∑

n=4

gn−2An(g) =
∞∑

n=4

∞∑

ℓ=0

gn−2+2ℓA(ℓ)
n . (2.10)

Note that we have included a factor of g for each three-vertex in the underlying Feynman

graph; this counting is compatible with the counting of g in the expansion of J(g). De-

manding invariance of all amplitudes, J(g)A(g) = 0, and separating the terms according

to their number of external legs as well as the power of g leads to the following invariance

– 8 –
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Figure 4. Expansion of quantum invariance of scattering amplitudes. Loops (light grey) can

appear inside the amplitudes, inside the symmetry generator or in the connection of the two.

equation

J
(0)
1,1A

(ℓ)
n +J

(0)
1,2A

(ℓ)
n−1+J

(0)
2,1A

(ℓ−1)
n+1 +J

(1)
1,1A

(ℓ−1)
n +J

(0)
1,3A

(ℓ)
n−2+J

(0)
2,2A

(ℓ−1)
n +J

(0)
3,1A

(ℓ−2)
n+2 +. . . = 0. (2.11)

In particular the illustration of this equation in figure 4 shows that the loop counting

includes loops within the amplitude, loops within the symmetry generator as well as loops

formed by connecting the two.

Note that it makes sense to rescale n-leg amplitudes An by a factor of g2−n such that

all tree amplitudes are at O(g0) and such that g2 exclusively counts the number of loops

in Feynman graphs. Thus we would use instead of (2.10) and (2.8)

A(g) =

∞∑

n=4

An(g) =

∞∑

n=4

∞∑

ℓ=0

g2ℓA(ℓ)
n , Jα(g) =

∞∑

m,n=1

∞∑

ℓ=0

g2(ℓ+m−1)(J(ℓ)
m,n)α. (2.12)

This is the normalisation that we shall use in the present work. Note that this leads to the

same invariance equation (2.11).

The crucial observation one can make in (2.11) is that generators which act on a single

leg and replace it by several legs, such as J
(0)
1,n, contribute to the same order as the free

generator J0. The conclusion would be that tree amplitudes in A(0) are not invariant under

J0, but rather under the combination Jα(0):

Jα(0)A(0) = 0 with A(0) =

∞∑

n=4

A(0)
n , Jα(0) =

∞∑

n=1

(J
(0)
1,n)α. (2.13)

On the one hand this type of invariance is reasonable because terms like J
(0)
1,2 + . . . are

precisely the “non-linear” contributions to symmetries in the interacting classical theory.

Naturally these would have to be the proper symmetries for tree level amplitudes and not
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Figure 5. The generating functional of colour-ordered scattering amplitudes. The prefactors 1/n

are the appropriate symmetry factors for cyclicity of the trace.

their free truncations J0. On the other hand, tree-level amplitudes at first sight do seem to

be invariant under the free generators. Therefore the interacting correction terms J
(0)
1,2 + . . .

would either have to be trivial or they would have to annihilate the amplitudes on their own

and independently of J0. Both alternatives are somewhat unsatisfactory and indeed there is

a third: Tree-level amplitudes are not invariant under the free action J0 of the symmetry.

This violation of conformal symmetry is subtle and therefore is not immediately seen.

For generic external momenta the amplitudes are indeed invariant under naive conformal

symmetry. However, when the amplitudes are treated as distributions, the action of J0

leaves certain contact terms when two adjacent momenta become collinear. Collinearity is

essential because breaking up one massless particle into two by means of J
(0)
1,2 + . . . can only

produce collinear momenta due to momentum conservation. In conclusion, it is conceivable

that conformal symmetry has a representation under which the tree-level amplitudes are

exactly invariant in a distributional sense. In particular, the length-changing effects would

be crucial for this representation. It would also be the proper starting point for extending

the symmetries to the loop level.

2.4 Amplitude generating functional

Before we consider concretely the length-changing contributions we shall first introduce a

framework to deal with such terms.

On a technical level we can combine all scattering amplitudes into a single generating

functional. Let J(λ, λ̄, η) be a source field corresponding to the superspace field Φ(λ, λ̄, η).

For clarity of notation we shall combine the bosonic and fermionic superspace coordinates

into a single symbol Λ = (λa, λ̄ȧ, ηA). The superspace measure is given through d4|4Λ :=

d4λd4η, see appendix A. The generating functional A of colour-ordered amplitudes An

then reads simply, cf. figure 5 (see also [10])

A[J ] =
∞∑

n=4

∫
d4|4Λ1 . . . d4|4Λn

1

n
Tr
(
J(Λ1) . . . J(Λn)

)
An(Λ1, . . . , Λn). (2.14)

Conversely, the n-particle amplitude can be extracted as the variation

An(Λ1, . . . , Λn) =
1

Nn
c

Tr

(
δ

δJ(Λn)
. . .

δ

δJ(Λ1)

)
A[J ]

∣∣∣∣
J=0

. (2.15)

Note that the traces incorporate the colour structure of colour-ordered amplitudes and 1/n

is the proper symmetry factor.
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For representations of psu(2, 2|4) the central charge of su(2, 2|4) must act trivially. This

implies that the fields Φ(λ, λ̄, η) are homogeneous functions under a simultaneous phase

shift of the arguments

Φ(eiϕΛ) = e−2iϕΦ(Λ), eiϕΛ := (eiϕλ, e−iϕλ̄, e−iϕη). (2.16)

Consequently, the same must be true for each leg of the amplitude, An(. . . , eiϕΛn, . . .) =

e−2iϕAn(. . . , Λn, . . .). The Jacobian of the measure also leads to a weight d4|4(eiϕΛ) =

e4iϕd4|4Λ. We will not impose a homogeneity condition for the source fields J(Λ) so that

the variations δ/δJ can be performed straight-forwardly. It is nevertheless clear that the

generating functional (2.14) projects to the part of J with definite scaling

Ĵ(Λ) :=
1

2π

∫ 2π

0
dϕ e2iϕJ(eiϕΛ). (2.17)

Therefore each factor of J in (2.14) can safely be replaced by Ĵ ; the integral over d4|4Λ

contains a similar integral over dϕ. Note that the projection Ĵ turns out to have the same

homogeneity as Φ in (2.16).

In the framework of the generating functional the superconformal generators (2.3)

take the form of variations, cf. [3, 50] for a similar representation. For convenience we shall

abbreviate variation by an accent J̌ on the field J

J̌(Λ) :=
δ

δJ(Λ)
. (2.18)

Here we list only a few of the relevant generators

(Q0)
aB =

∫
d4|4Λ Tr λaηBJ(Λ) J̌(Λ) , (S0)aB =

∫
d4|4Λ Tr ∂a∂BJ(Λ) J̌(Λ) ,

(Q̄0)
ȧ
B = −

∫
d4|4Λ Tr λ̄ȧ∂BJ(Λ) J̌(Λ) , (S̄0)

B
ȧ = −

∫
d4|4Λ Tr ηB ∂̄ȧJ(Λ) J̌(Λ) ,

(P0)
aḃ =

∫
d4|4Λ Tr λaλ̄ḃJ(Λ) J̌(Λ) , (K0)aḃ

=

∫
d4|4Λ Tr ∂a∂̄ḃ

J(Λ) J̌(Λ) . (2.19)

After performing the variations on A the derivatives should be integrated by parts to make

them act on An as for (2.3). A classical contribution to add one leg takes the qualitative

form J
(0)
(1,2) ∼

∫
Tr JJJ̌ . In practice, it acts by taking away one source term and replacing it

by two. The precise form of such contributions will be worked out in the following section.

Let us note that the above expressions for the superconformal generators remain valid

even for amplitudes without colour ordering and away from the planar limit or for generic

gauge groups. Also the classical length-changing contributions are expected to remain valid

at finite Nc. Conversely, a representation of the Yangian cannot be formulated using the

generating functional because one needs a framework which can make explicit reference to

specific legs, e.g. legs k and ℓ as in (2.7).

3 Superconformal invariance of MHV amplitudes

In this section we wish to use the known form of the tree level MHV amplitudes to determine

the necessary deformations J
(0)
1,n of the classical conformal symmetry generators (cf. (2.13)).
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3.1 MHV amplitudes

Scattering amplitudes can be classified through their helicity. It is measured by the gener-

ator B counting the number of η’s

An =
n−2∑

k=2

An,k, BAn,k = 4kAn,k. (3.1)

The number of η’s ranges between 8 for MHV amplitudes and 4n− 8 for MHV amplitudes

AMHV
n = An,2, AMHV

n = An,n−2. (3.2)

The tree level MHV amplitudes of N = 4 SYM have a simple form when written in

terms of Lorentz invariant products of spinors [51] and particularly so in the manifestly

supersymmetric formulation [45] using the appropriate on-shell superspace. They take the

form6

AMHV
n =

δ4(P ) δ8(Q)

〈12〉〈23〉 . . . 〈n1〉 , P aḃ =
n∑

k=1

λa
kλ̄

ḃ
k , QaB =

n∑

k=1

λa
kη

B
k , (3.3)

where the brackets are defined in appendix A.

In the physically relevant case the spacetime signature is (3, 1). It implies that the

above expression for the amplitude cannot be entirely meaningful because it assumes that

all particles have strictly positive energies while energy conservation requires the sum of all

energies to vanish. For non-trivial amplitudes at least two particles should have negative

energies. A particle k with negative energy is achieved by flipping the sign of λ̄k. For the

time being we shall ignore the implications of overall momentum conservation and assume

all energies to be positive. The minute modifications due to negative energy particles will

be discussed in section 3.3.

We now act with the free superconformal generator (S̄0)
B
ȧ =

∑n
k=1 ηB

k ∂̄k,ȧ as defined

in (2.3) on the above amplitude. Except for the delta function, the amplitude is holomor-

phic in the λk. Thus, at first sight, the generator seems to act only on the delta function

(S̄0)
B
ȧ δ4(P ) =

n∑

k=1

ηB
k

∂

∂λ̄ȧ
k

δ4(P ) =

n∑

k=1

ηB
k λc

k

∂δ4(P )

∂P cȧ
= QcB ∂δ4(P )

∂P cȧ
. (3.4)

The fermionic delta function δ8(Q) ensures that the action vanishes S̄0A
MHV
n = 0 [7].

In (3, 1) spacetime signature, however, λ and λ̄ are related by complex conjugation,

and thus there is the holomorphic anomaly [52]. It gives a non-trivial contribution when

the derivative with respect to λ̄ acts on poles in the variable λ (see appendix A). This

gives rise to terms7

∂

∂λ̄ȧ

1

〈λ, µ〉 = πδ2(〈λ, µ〉) εȧḃµ̄
ḃ. (3.5)

As can be immediately seen these anomaly terms coincide with the collinear singularities

of the amplitude which as discussed previously is their physical origin.

6We neglect an overall factor of i(2π)4 in our definition of the amplitudes and similarly they are nor-

malised so that there is no prefactor of the coupling.
7We thank Emery Sokatchev for reminding us of the precise form of the anomaly.
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Here there is a crucial difference between the (3, 1) physical Minkowski signature and

(2, 2) split signature used for considerations in twistor space: In (3, 1) signature two light-

like vectors are orthogonal if and only if they are collinear. Collinearity implies two con-

straints on the six degrees of freedom for two light-like vectors, it is thus a codimension-two

condition. In the spinor formulation collinearity is equivalent to 〈λk, λk+1〉 = 0 which is

one complex or two real conditions, hence codimension two. Conversely for (2, 2) signature

〈λk, λk+1〉 = 0 is merely one real condition or codimension one. Equivalently orthogonality

does not imply full collinearity, but only one constraint. The nature of the two types of

singularities is rather different. The holomorphic anomaly only applies to codimension-two

singularities. Codimension-one singularities can also have anomalies, but one has to define

properly the distributional meaning of (〈λk, λk+1〉)−1. One could consider adding ±iǫ to

the denominators, but it is not clear which sign to use (for each term). A principal value

prescription appears to be the proper choice, but this leads to no anomaly. Altogether this

consideration shows that the signature plays an important role for scattering amplitudes

and we shall continue to work exclusively in Minkowski signature.

In the light of the holomorphic anomaly, there are extra terms in the action of S̄0,
8

(S̄0)
B
ȧ AMHV

n =

n∑

k=1

ηB
k

∂

∂λ̄ȧ
k

δ4(P ) δ8(Q)

〈1, 2〉 . . . 〈k − 1, k〉〈k, k + 1〉 . . . 〈n, 1〉

= −π

n∑

k=1

εȧḃ

(
λ̄ḃ

k−1η
B
k − λ̄ḃ

kη
B
k−1

) δ2(〈λk−1, λk〉) δ4(P ) δ8(Q)

〈1, 2〉 . . . 〈k − 1, k〉0 . . . 〈n, 1〉 . (3.6)

The existence of extra terms is well-known and it has been employed successfully at the

loop level [52]. At tree level, it has largely been ignored so far because the anomaly is

restricted to singular momentum configurations.

It turns out to be convenient to cast this statement into the language of generating

functionals. Let AMHV
n [J ] be the generating functional of MHV amplitudes (3.3) with n

legs in the sense of (2.14). Acting with the bare generator S̄0 as defined in (2.19) on

AMHV
n [J ] by performing the functional variations and integrating by parts we find

(S̄0)
B
ȧ AMHV

n [J ] = −π

∫ n∏

k=1

d4|4Λk Tr
(
[J(Λ1), J(Λ2)] . . . J(Λn)

)

× εȧċλ̄
ċ
1η

B
2

δ2(〈1, 2〉) δ4(P ) δ8(Q)

〈2, 3〉 . . . 〈n, 1〉 . (3.7)

We have made use of the cyclicity of the amplitudes, the trace and the measure in order

to collect n equivalent copies of the contribution in (3.6) which thus cancel the symmetry

factor of 1/n in (2.14). The commutator term in the trace results from the difference term

in the second line of (3.6) after interchanging Λ1 and Λ2.

We can partially perform the integrals over Λ1 to remove the delta function imposing

the collinearity of the 1 and 2 legs. A convenient change of the variables Λ1, Λ2 to this end

8This fact and several of its implications discussed below have been found independently by James

Drummond. Johannes Henn and Emery Sokatchev also pointed out the distributional non-invariance.
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reads
λ1 = eiϕλ12 sin α, η1 = e−iϕ(η12 sinα + η′ cos α),

λ2 = λ12 cos α + zλ′, η2 = η12 cos α − η′ sin α. (3.8)

The four complex variables λa
1, λ

a
2 have been replaced by three complex variables λa

12, z and

two real variables α ∈ [0, 1
2π], ϕ ∈ [0, 2π]. The spinor λ′ is a constant reference spinor.

The integral over d2z localises at z = z̄ = 0 and after evaluating the various Jacobians we

get that

(S̄0)
B
ȧ AMHV

n [J ] = −π

∫ n∏

k=3

d4|4Λk d4|4Λ12 d4η′ dα dϕ e3iϕεȧċλ̄
ċ
1η

B
2 ×

× Tr
(
[J(Λ1), J(Λ2)] . . . J(Λn)

) δ4(P ′)δ8(Q′)

〈12, 3〉 . . . 〈n, 12〉 (3.9)

where P ′ = λ12λ̄12 +
∑n

k=3 λkλ̄k and Q′ = η12λ12 +
∑n

k=3 ηkλk. Alternatively one can

use the formula (A.6) to derive this result. Note that the integral over ϕ amounts to

the projection Ĵ(Λ1) in (2.17). Removing the phase in Λ1 such that λ1 = λ12 sin α and

η1 = η12 sin α + η′ cos α we obtain the more compact expression

(S̄0)
B
ȧ AMHV

n [J ] = −2π2

∫ n∏

k=3

d4|4Λk d4|4Λ12 d4η′ dα εȧċλ̄
ċ
1η

B
2 ×

× Tr
(
[Ĵ(Λ1), Ĵ(Λ2)] . . . J(Λn)

) δ4(P ′)δ8(Q′)

〈12, 3〉 . . . 〈n, 12〉 . (3.10)

Note that the integrand is homogeneous in Λ2 (2.16) and thus the second source term

J(Λ2) was replaced by the projection Ĵ(Λ2).

We observe that the anomalous variation (3.9) produces AMHV
n−1 with slight modifica-

tions merely on the first leg. Such a modification can be imposed through a variation of the

sort
∫

Tr JJJ̌ acting on AMHV. More precisely the form of the correction S̄+ = S̄
(0)
1,2 reads

(S̄+)Bȧ = 2π2

∫
d4|4Λd4η′ dα εȧċλ̄

ċ
1 ηB

2 Tr
(
[Ĵ(Λ1), Ĵ(Λ2)]J̌(Λ)

)

= −π2

∫
d4|4Λd4η′ dα εȧċλ̄

ċη′B Tr
(
[Ĵ(Λ1), Ĵ(Λ2)]J̌(Λ)

)
(3.11)

with the following definitions for Λ1, Λ2

λ1 = λ sinα, η1 = η sin α + η′ cos α,

λ2 = λ cos α, η2 = η cos α − η′ sin α. (3.12)

The second form in (3.11) is due to replacement of Λ1, Λ2 and making use of antisymmetry

of the commutator. The plus in S̄+ signifies that the operator increases the helicity by +2

relative to S̄0. It was constructed such that

S̄0AMHV
n + S̄+AMHV

n−1 = 0. (3.13)
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As can be seen we find a recursive pattern for the action of the generator on the

amplitudes. We can ask what is the starting point for this action and the answer

is straightforward:

S̄0AMHV
4 = 0. (3.14)

This follows from the above calculation as

(S̄0)
B
ȧ AMHV

4 = −π

4∑

k=1

ε
ȧḃ

(
λ̄ḃ

k−1η
B
k − λ̄ḃ

kη
B
k−1

)δ2(〈λk−1, λk〉) δ4(P ) δ8(Q)

〈12〉 . . . 〈k − 1, k〉0 . . . 〈41〉 . (3.15)

However now, after making use of the delta-function imposing collinearity between pk and

pk−1, the momentum conservation implies that the three remaining momenta are collinear

and the zero coming from the δ8(Q) results in the right hand side being zero. This is

essentially equivalent to the fact that in (3, 1) signature and for real momenta the three-

point amplitude vanishes due to zero allowed phase space.

In conclusion, the corrected classical superconformal generator (relevant to MHV am-

plitudes) is

S̄B
ȧ = (S̄0)

B
ȧ + (S̄+)Bȧ (3.16)

and it exactly annihilates the MHV functional AMHV[J ]

S̄AMHV[J ] = 0. (3.17)

Note that the cancellation is not restricted to the planar, but it holds for all Nc and even

for generic gauge groups.

Although, and as we will show later, it can be determined from the algebra, it is

perhaps worthwhile to directly calculate K+ = K
(0)
1,2 from K0 acting on MHV amplitudes;

by a very similar calculation we find

(K+)bȧ = −2π2

∫
d4|4Λd4η′ dα εȧċλ̄

ċ
1 Tr

(
[Ĵ(Λ1), ∂2,bĴ(Λ2)]J̌(Λ)

)
(3.18)

with the same definitions as above.

3.2 Conjugate MHV amplitudes

Now we wish to find the deformation of the operator S defined in (2.19) and the simplest

method is to consider its action on MHV amplitudes. A convenient form of the tree-level

MHV contribution to the n-point super-amplitude is given by [53]

AMHV
n = δ4(P ) δ8(Q)Fn(Λ) (3.19)

where

δ8(Q)Fn(Λ) =

∫ n∏

i=1

(
d4η̄i exp(ηAη̄i,A)

) δ8(Q̄)

[12][23] . . . [n1]
, Q̄ȧ

B =
n∑

i=1

λ̄ȧ
i η̄i,B. (3.20)

One can use the integral representation for the Graßmannian delta function

δ8(Q̄) =

∫
d8ω exp

(
ωB

ȧ Q̄ȧ
B

)
(3.21)
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to write this as

δ8(Q)Fn(Λ) =
1

[12] . . . [n1]

∫
d8ω

n∏

i=1

δ4(ηi − λ̄ȧ
i ωȧ). (3.22)

Thus

(S0)BaAMHV[J ] = π
∞∑

n=4

∫
d8ω

n∏

k=1

(
d4|4Λk δ4(ηi − λ̄ȧ

i ωȧ)
)δ2([1, 2]) δ4(P )

[2, 3] . . . [n, 1]
×

× εabλ
b
1 Tr

(
[J(Λ1), ∂2,BJ(Λ2)] . . . J(Λn)

)
. (3.23)

As was previously done we can use the delta function to partially perform the Λn integral

and rewrite the above expression in a form that makes the necessary generator correction

apparent. After a little algebraic manipulation one can show that the correction S− = S
(0)
1,2

of S takes the form

(S−)Ba = −2π2

∫
d4|4Λd4η′ dα δ4(η′)εacλ

c
1 Tr

(
[Ĵ(Λ1), ∂2,B Ĵ(Λ2)]J̌(Λ)

)

= −2π2

∫
d4|4Λdα εacλ

c
1 Tr

(
[Ĵ(Λ1), ∂2,B Ĵ(Λ2)]J̌(Λ)

)

= +π2

∫
d4|4Λd4η′ dα δ4(η′)εacλ

c∂′
B Tr

(
[Ĵ(Λ1), Ĵ(Λ2)]J̌(Λ)

)
(3.24)

where the minus in S− signifies a decrease of the helicity. As before Λ1 and Λ2 are defined

in (3.12) but with η′ = 0 for the second line. The complete classical expression for the

superconformal generator

SBa = (S0)Ba + (S−)Ba (3.25)

annihilates the MHV amplitudes SAMHV[J ] = 0.

Similarly we find

(K−)aȧ = −2π2

∫
d4|4Λd4η′ dα δ4(η′)Tr

[
εabλ

b
1Ĵ(Λ1), ∂̄2,ȧĴ(Λ2)

]
J̌(Λ). (3.26)

3.3 Negative-energy particles

In the above discussion we have restricted ourselves to external particles with positive

energy, that is paḃ
k = λa

kλ̃
ḃ
k with λ̃k = +λ̄k and thus Ek = p0

k = 1
2 (λ1

kλ̄
1
k + λ2

kλ̄
2
k) > 0 for all

particles k. As mentioned previously though, physical scattering amplitudes require that

at least two external particles have negative energy, i.e. λ̃k = −λ̄k such that paḃ
k = −λa

kλ̄
ḃ
k

and hence Ek < 0. In the following we will extend our framework slightly in order to

include negative-energy particles.

In the tree-level MHV amplitude (3.3), negative-energy particles only introduce a

change of sign inside the momentum delta-function δ4(P ). The form of collinear singu-

larities as in (3.6) is therefore not affected by the energy signs of the adjacent collinear

particles. As we shall see below, only the splitting of the collective momentum into two

collinear pieces as in (3.12) changes slightly when the adjacent particles have different

energy signs.
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For including particles with positive and negative energies into our framework, we

introduce two types of source fields: J+(Λ) corresponds to positive-energy particles while

J−(Λ) corresponds to negative-energy ones. The amplitude generating functional (2.14)

comprising all possible particle configurations then becomes9

A[J ] =

∞∑

n=4

1

n

∫ n∏

k=1

d4|4Λk

∑

sj=±
(1≤j≤n)

Tr
(
Js1(Λ1) . . . Jsn(Λn)

)
An(Λs1

1 , . . . , Λsn
n ) , (3.27)

where An(Λs1

1 , . . . , Λsn
n ) equals the amplitude An(Λ1, . . . , Λn) with λ̄k and ηk replaced by

skλ̄k and skηk.
10

When extending the formalism in this way, also the free symmetry generators (2.19)

need to include variations with respect to particles of both energy signs. The generator S̄0

for example becomes

(S̄0)
B
ȧ = −

∫
d4|4ΛηB Tr

∑

s=±

(
∂̄ȧJ

s(Λ)
)
J̌s(Λ) . (3.28)

We will now calculate the classical non-linear correction to this generator. This generalises

the treatment in section 3.1 and will result in correction terms S̄
(0)
s0→{s1,s2}

that split a leg

with sign s0 into two collinear particles with signs s1, s2. Acting with S̄0 on AMHV[J ] is

completely analogous to (3.7) and yields

(S̄0)
B
ȧ AMHV[J ] = −π

∞∑

n=4

∫ n∏

k=1

d4|4Λk εȧċλ̄
ċ
1η

B
2

δ2(〈1, 2〉)δ8(Q)

〈2, 3〉 · · · 〈n, 1〉

×
∑

sj=±

δ4(P )Tr
(
[Js1

1 , Js2

2 ]Js3

3 · · · Jsn
n

)
, (3.29)

where P =
∑n

j=1 pj =
∑n

j=1 sjλjλ̄j and Q =
∑n

j=1 sjλjηj . Now the terms in which s1 = s2,

i.e. the part where the collinear particles have both positive or both negative energy is

compensated by a non-linear correction S̄=
+ = S̄

(0)
s→{s,s} which looks exactly as (3.11) with

J replaced by Js and including a sum over s = ±.

The terms of (3.29) in which the two collinear particles 1 and 2 have different energy

signs we split into a part with |E1| < |E2| and a part with |E1| > |E2|. In the former part,

the momentum λ2λ̄2 −λ1λ̄1 carries the sign s2 of particle 2, in the latter part it carries the

opposite sign s1. Using the fact that δ2(〈12〉)/〈23〉 · · · 〈n, 1〉 is invariant under an exchange

of the labels 1 and 2, we can exchange those labels in the latter part. It then combines

9An alternative to deal with negative-energy particles is to represent them through variations J̌(Λ) where

the sources J(Λ) correspond to positive-energy particles only. The amplitude would thus be promoted to

a variational operator. This picture is equivalent to the canonical quantum field theory framework where

the S-matrix is an operator acting on the Fock space.
10Changing also the sign of the fermionic variable η is purely conventional.
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with the former to

− π
∞∑

n=4

∫

|E1|<|E2|

n∏

k=1

d4|4Λk εȧċ
δ2(〈1, 2〉)δ8(Q)

〈2, 3〉 · · · 〈n, 1〉

×
∑

sj=±
2≤j≤n

δ4(P )
(
λ̄ċ

1η
B
2 − λ̄ċ

2η
B
1

)
Tr
(
[J−s2

1 , Js2

2 ]Js3

3 · · · Jsn
n

)
, (3.30)

where P = s2(λ2λ̄2 − λ1λ̄1) +
∑n

j=3 sjλj λ̄j. As before we can now use the delta

function δ2(〈12〉) to partially perform the λ1 integral by using (A.5), this time setting

λ1 = eiϕλ2 tanh α, rescaling λ2 → λ′
2 cosh α and integrating over ϕ and α instead of λ1.

Further including a rotation of η1 and η2, altogether we define the new set of variables Λ′
2,

η′, α and ϕ through (cf. (3.8)):

λ1 = eiϕλ12 sinh α , η1 = e−iϕ(η12 sinhα + η′ cosh α) ,

λ2 = λ12 cosh α , η2 = η12 cosh α + η′ sinhα , (3.31)

⇒ d4λ1 d4λ2 δ2(〈12〉) = dλ12 dϕdα sinhα cosh α .

With this change of variables, the part of (S̄0)
B
ȧ AMHV[J ] where s1 = −s2 (3.30) becomes

−
∞∑

n=4

∫ n∏

k=3

d4|4Λk d4|4Λ12

∑

sj=±
1≤j≤n−1

δ4(P ′)δ4(Q′)

〈12, 3〉 · · · 〈n, 12〉 · π
∫

d4η′dϕdα e3iϕ

× εȧċ(λ̄
ċ
1η

B
2 − λ̄ċ

2η
B
1 )Tr

(
[J−s2

1 , Js2

2 ]Js3

3 · · · Jsn
n

)
, (3.32)

where P ′ = s2λ12λ̄12 +
∑n

j=3 sjλj λ̄j and Q′ = s2λ12η12 +
∑n

j=3 sjλjηj . As in the purely

positive-energy case (3.9), this produces something very reminiscent of AMHV
n−1 and can

hence be compensated by adding a term S̄
(0)
s→{+,−} to S̄. In this case, the correction term

splits a particle with sign s into two collinear particles with opposite energy signs.

The complete tree-level correction to the operator S̄ thus reads

S̄+ = S̄
(0)
s→{s,s} + S̄

(0)
s→{+,−} = S̄=

+ + S̄
6=
+ , (3.33)

where S̄=
+ is given by (3.11) with J replaced by Js and including a sum over s = ±. After

replacing Js by the projection Ĵs (2.17) and removing the phase of Λn in (3.32), the further

correction S̄
6=
+ is given by11

(S̄6=
+)Bȧ = 2π2

∫
d4|4Λd4η′dα

∑

s=±

εȧċ(λ̄
ċ
1η

B
2 − λ̄ċ

2η
B
1 )Tr

(
[Ĵ−s(Λ1), Ĵ

s(Λ2)]J̌
s(Λ)

)
, (3.34)

where Λ1 and Λ2 are defined as

λ1 = λ sinh α , η1 = η sinhα + η′ cosh α ,

λ2 = λ cosh α , η2 = η cosh α + η′ sinhα . (3.35)

11Note that the integral over α in (3.34) runs from 0 to ∞, while it runs from 0 to 1

2
π in (3.11).
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Figure 6. Statement of exact invariance of tree amplitudes under the deformed superconformal

representation.

J = J0

Prepared for JHEP♣

+ J+

Prepared for JHEP♣

+ J
−

Prepared for JHEP♣

+ J+−

Prepared for JHEP♣

Figure 7. The free superconformal generators J0 are deformed by contributions changing the

number of particles and thereby relating scattering amplitudes with different numbers of legs to

each other.

As can be seen from this example calculation, the contributions to the classical gener-

ators coming from the inclusion of negative-energy particles are obtained straightforwardly

once the purely positive-energy corrections are known. Since the additional terms obscure

notation though, we refrain from including them in the remainder of this work.

4 Closure of the algebra

In the previous section perturbative corrections to the superconformal generators SaA

and S̄B
ȧ of N = 4 SYM theory were derived by requiring the generating functional of

MHV scattering amplitudes (2.14) to be invariant under the action of these operators (cf.

figure 6).

A priori, however, it is not clear that these deformations are complete because we have

considered only a subset of amplitudes. An indication of completeness may come from

algebra. We would like to show that the deformed generators still obey the psu(2, 2|4)
superconformal algebra, which is also not clear a priori.

4.1 Classical representation

Looking ahead to section 4.3, the corrected generators are of the form (cf. figure 7)

S = S0 + S−, S̄ = S̄0 + S̄+, K = K0 + K+ + K− + K+−. (4.1)
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All other generators remain undeformed. The correction terms to (2.19) were computed

in (3.11), (3.24), (3.18), (3.26) and read

(S−)Aa = −2π2

∫
d4|4Λd4η′ dα δ4(η′)Tr[εabλ

b
1Ĵ1, ∂2,AĴ2]J̌ ,

(S̄+)Aȧ = +2π2

∫
d4|4Λd4η′ dα Tr

[
ε
ȧḃ

λ̄ḃ
1Ĵ1, η

A
2 Ĵ2

]
J̌ ,

(K−)aȧ = −2π2

∫
d4|4Λd4η′ dα δ4(η′)Tr

[
εabλ

b
1Ĵ1, ∂̄2,ȧĴ2

]
J̌ ,

(K+)aȧ = −2π2

∫
d4|4Λd4η′ dα Tr

[
εȧḃλ̄

ḃ
1Ĵ1, ∂2,aĴ2

]
J̌ , (4.2)

where Jk = J(Λk), J = J(Λ). The term K+− can be found at the end of section 4.3. The

spinor helicity coordinates Λ1, Λ2 are defined as follows (3.12)

λ1 = λ sin α, η1 = η sin α + η′ cos α,

λ2 = λ cos α, η2 = η cos α − η′ sinα. (4.3)

4.2 Algebra relations

It is straight-forward to read off the algebra relations from the representation (2.3) of the

undeformed generators. The indices of a generator J under Lorentz and internal symmetry

transform as

[La
b,Jc] = −δa

c Jb +
1

2
δa
b Jc, [La

b,J
c] = δc

bJ
a − 1

2
δa
b Jc,

[RA
B,JC ] = −δA

CJB +
1

4
δA
BJC , [RA

B ,JC ] = δC
BJA − 1

4
δA
BJC ,

[L̄ȧ
ḃ
,Jċ] = −δȧ

ċ J
ḃ
+

1

2
δȧ
ḃ
Jċ, [L̄ȧ

ḃ
,Jċ] = δċ

ḃ
Jȧ − 1

2
δȧ
ḃ
Jċ. (4.4)

All indices in the deformations (4.2) are contracted properly using only invariant symbols.

Consequently all commutators with L, L̄ and R are unchanged using the free rotation

generators L0, L̄0 and R0.

Commutators with the dilatation generator, [D,J] = dim(J)J, are specified through

the conformal dimensions of the generators, the non-trivial ones being

dim(P) = −dim(K) = 1, dim(Q) = dim(Q̄) = −dim(S) = −dim(S̄) =
1

2
. (4.5)

By power counting it is also straight-forward to show that D = D0 yields the

correct algebra.

It is the aim of this section to show that the additional non-trivial algebra relations

given by

{QaA, Q̄ȧ
B} = δA

BPaȧ, {SaA, S̄B
ȧ } = δB

AKaȧ,

[Paȧ,SbA] = δa
b Q̄ȧ

A, [Kaȧ,Q
bA] = δb

aS̄
A
ȧ ,

[Paȧ, S̄A
ḃ
] = δȧ

ḃ
QaA, [Kaȧ, Q̄

ḃ
A] = δḃ

ȧSaA, (4.6)
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and

[Kaȧ,P
bḃ] = δḃ

ȧL
b
a + δb

aL̄
ḃ
ȧ + δb

aδ
ḃ
ȧD,

{QaA,SbB} = δA
BLa

b − δa
b RA

B + δa
b δA

B

(
1

2
D +

1

4
C

)
,

{Q̄ȧ
A, S̄B

ḃ
} = δB

A L̄ȧ
ḃ
+ δȧ

ḃ
RB

A + δȧ
ḃ
δB
A

(
1

2
D − 1

4
C

)
, (4.7)

as well as all trivial commutators are not altered by the introduced corrections.

Since P and K are expressed in terms of Q, Q̄ and S, S̄, respectively, the verification

of the algebra reduces to a minimal set of commutation relations. These are the relations

involving only the four latter operators. The remaining commutators then follow using the

Jacobi identity as will be demonstrated at the end of the section.

4.3 The generator K

For a verification of the superconformal algebra it is not necessary to explicitly construct

the generator K of special conformal transformations. Nevertheless it is desirable to obtain

an expression for its deformations with regard to the symmetries of scattering amplitudes.

The corrections to the conformal generator take the form

K = K0 + K+ + K− + K+−

= {S0, S̄0} + {S0, S̄+} + {S−, S̄0} + {S−, S̄+}. (4.8)

Employing the expressions for the corrections to S and S̄ obtained in (3.11), (3.24), the

above anti-commutators can be explicitly evaluated. We make use of the notation in-

troduced in (3.12) and note the following set of useful identities for the evaluation of

commutation relations

0 = λaηA − λa
1η

A
1 − λa

2η
A
2 , (4.9)

ηB
1 ∂̄1,ȧJ1 = (ηB + cot α η′B)∂̄ȧJ1, (4.10)

ηB
2 ∂̄2,ȧJ2 = (ηB − tan α η′B)∂̄ȧJ2, (4.11)

λ̄ȧ
1∂1,AJ1 = λ̄ȧ∂AJ1, (4.12)

λ̄ȧ
2∂2,AJ2 = λ̄ȧ∂AJ2. (4.13)

We first compute the anti-commutator of S̄0 and S− to find

{
(S−)aA, (S̄0)

B
ȧ

}
Ĵ = 2π2

∫
d4η′ dα δ4(η′) εabλ

b
1

{
− ηB ∂̄ȧ

[
Ĵ1, ∂2,AĴ2

]

+ ηB
1

[
∂̄1,ȧĴ1, ∂2,AĴ2

]
−
[
Ĵ1, ∂2,AηB

2 ∂̄2,ȧĴ2

]}
. (4.14)

Evaluating (4.10), (4.11) at η′ = 0 yields {(S−)aA, (S̄0)
B
ȧ } = δB

A (K−)aȧ with

(K−)aȧĴ = −2π2

∫
d4η′ dα δ4(η′)

[
εabλ

b
1Ĵ1, ∂̄2,ȧĴ2

]
. (4.15)
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In order to compute K+ we consider

{
(S0)aB , (S̄+)Aȧ

}
Ĵ = 2π2

∫
d4η′ dα ε

ȧḃ
λ̄ḃ

1

{
− ∂a∂B

[
Ĵ1, η

A
2 Ĵ2

]

− ηA
2

[
∂1,a∂1,B Ĵ1, Ĵ2

]
− ηA

2

[
Ĵ1, ∂2,a∂2,B Ĵ2

]}
. (4.16)

We add the following integration by parts term to the r.h.s.

2π2

∫
d4η′ dα ∂′

B ε
ȧḃ

λ̄ḃ
1

{
− cos α

[
∂1,aĴ1, η

A
2 Ĵ2

]
+ sin α

[
Ĵ1, η

A
2 ∂2,aĴ2

]}
= 0 (4.17)

in order to shift all fermionic derivatives to their bosonic counterparts. Using ∂AJ1 =

sin α ∂1,AJ1 and ∂′
AJ1 = cos α ∂1,AJ1, etc., we obtain {(S0)aB , (S̄+)Aȧ } = δA

B(K+)aȧ with

(K+)aȧĴ = −2π2

∫
d4η′ dα

[
ε
ȧḃ

λ̄ḃ
1Ĵ1, ∂2,aĴ2

]
, (4.18)

which coincides with the result given in (3.18).

Finally, we want to show that {S−, S̄+} is a su(4) singlet and hence defines K+−

properly. To make the calculation more tractable, we introduce two sets of fermionic

variables θ̃A, θA which we contract with the generators

Sa
− := εabθ̃C(S−)bC , S̄ȧ

+ := εȧḃεCDEF θDθEθF (S̄+)C
ḃ
. (4.19)

The aim is to show that the commutator is totally antisymmetric in θ̃ and the θ’s12

[
Sa

−, S̄ḃ
+

]
∼ εCDEF θ̃CθDθEθF . (4.20)

We can evaluate the action of the generators on a source by rewriting the fermionic integral

in S̄ȧ
+ as

∫
d4η′ η′ ∼ ∂′3

Sa
−Ĵ(Λ) ∼ +λa

∫
dα cos α

[
∂̃Ĵ(sin αΛ), J(cos αΛ)

]

− λa

∫
dα sin α

[
Ĵ(sin αΛ), ∂̃J(cos αΛ)

]
,

S̄ȧ
+Ĵ(Λ) ∼ +λ̄ȧ

∫
dα cos3 α

[
∂3Ĵ(sin αΛ), J(cos αΛ)

]

− 3λ̄ȧ

∫
dα cos2 α sinα

[
∂2Ĵ(sin αΛ), ∂J(cos αΛ)

]

+ 3λ̄ȧ

∫
dα cos α sin2 α

[
∂Ĵ(sin αΛ), ∂2J(cos αΛ)

]

− λ̄ȧ

∫
dα sin3 α

[
Ĵ(sin αΛ), ∂3J(cos αΛ)

]
. (4.21)

12The fermionic variables θ turn the new generators Sa
−

and S̄ȧ
+ into bosonic operators. Consequently

we should compute their commutator. Likewise all the objects in the following computation will turn out

to be (conveniently) bosonic.
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The above index-free partial derivatives are defined as ∂ := θA∂A and ∂̃ := θ̃A∂A, and

they are bosonic. Applying the two generators to a source J(Λ) results in three sources

Jx,y,z := J(xΛ, yΛ, zΛ) with spherical coordinates and measure

x = sin α cos β, y = sinα sin β, z = cos α,

∫
d2Ω =

∫
dα dβ sin α. (4.22)

The benefit of these coordinates is that they are fully interchangeable which allows for the

Jacobi identity to be used easily.

Using this expression we can compute [Sa
−, S̄ḃ

+]Ĵ(Λ) and find 16 terms initially which

can be grouped into 5 classes depending on how their derivatives are distributed. Some

terms have to be converted by means of a Jacobi identity and permuting the coordinates

x, y, z accordingly. It is now a matter of patience and care to show that all the derivatives

∂ and ∂̃ appear symmetrically and thus (4.20) holds.

There is however a slightly more convenient way to show the required property for-

mally: We note that the terms in (4.20) follow a certain regular pattern. Let us therefore

introduce some derivative operators ∂1, ∂2 acting on three sources Jx,y,z according to

∂1Jx =
xz√

1 − z2
∂Jx, ∂1Jy =

yz√
1 − z2

∂Jy, ∂1Jz = −
√

1 − z2 ∂Jz,

∂2Jx =
y√

1 − z2
∂Jx, ∂2Jy =

−x√
1 − z2

∂Jy, ∂2Jz = 0,
(4.23)

It is easy to convince oneself that

[
Sa

−, S̄ḃ
+

]
Ĵ(Λ) ∼ λaλ̄ḃ

∫
d2Ω

(
∂̃1(∂2)

3 − ∂̃2(∂1)
3
) [

[Ĵx, Ĵy], Ĵz

]
. (4.24)

The point is that Sa
− ∼ ∂k and Sḃ

+ ∼ (∂k)
3, cf. (4.21), and the index k tells whether the

operator acts on the outer or the inner commutator. Note that the density factor sinα of

d2Ω originates from rescaling λa or λ̄ȧ in the second generator.

The above expression (4.24) is however not yet manifestly symmetric in tilded and

untilded derivatives as required for (4.20). We have to use the Jacobi identity to achieve

symmetry. It turns out that replacing

[
[Ĵx, Ĵy], Ĵz

]
→ 2

3

[
[Ĵx, Ĵy], Ĵz

]
− 1

3

[
[Ĵx, Ĵz ], Ĵy

]
− 1

3

[
[Ĵz , Ĵy], Ĵx

]
(4.25)

achieves the goal. In order to make the three terms comparable, we have to permute

the coordinates x, y, z. The permutations also transform the two derivative operators
~∂ = (∂1, ∂2) using the permutation matrices

Pxy
~∂ =

(
+1 0

0 −1

)
~∂,

Pxz
~∂ =

1√
1 − x2

√
1 − z2

(
−xz −y

−y +xz

)
~∂,

Pyz
~∂ =

1√
1 − y2

√
1 − z2

(
−yz +x

+x +yz

)
~∂. (4.26)
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In confirming the relation one can for convenience treat ∂k as two bosonic variables and

thus (4.24) is merely a quadratic polynomial in ∂k.

Using the same notation we can formally write down K+−

(K+−)bȧ ∼
∫

d4|4Λd2Ω d4θ εbdεȧċλ
dλ̄ċ
(
∂1(∂2)

3 − ∂2(∂1)
3
) [

[Ĵx, Ĵy], Ĵz

]
J̌ . (4.27)

Due to K ∼ {S, S̄} the conformal generator inherits the property to annihilate the gen-

erating functional of scattering amplitudes (2.14) from S, S̄. We thus consider it an

unreasonable hardship to compute the precise prefactor of (4.27).

4.4 Commutators between Q, Q̄ and S, S̄

In this section we demonstrate that the commutation relations of the generators S, S̄

with Q, Q̄ are not altered by the perturbative corrections introduced above by acting on

a source term Ĵ(Λ).

It is straight-forward to show that the anticommutator between Q0 and S̄+ vanishes

by means of (4.9) {
(Q0)

aA, (S̄+)Bȧ
}

= 0. (4.28)

Taking into account (4.12), (4.13), also the anti-commutator of Q̄0 and S− vanishes:

{
(Q̄0)

ȧ
A, (S−)aB

}
Ĵ = 2π2

∫
d4η′ dα δ4(η′) εabλ

b
1

{
λ̄ȧ

1

[
∂1,AĴ1, ∂2,B Ĵ2

]

+ λ̄ȧ
2

[
Ĵ1, ∂2,A∂2,B Ĵ2

]
− λ̄ȧ∂A

[
Ĵ1, ∂2,B Ĵ2

]}

= 0. (4.29)

Next we evaluate the anti-commutator of Q0 and S− giving

{
(Q0)

aA, (S−)bB
}
Ĵ = −2π2

∫
d4η′ dα δ4(η′)εbcλ

c
1

{
λa

1η
A
1

[
Ĵ1, ∂2,B Ĵ2

]

− λa
2

[
Ĵ1, ∂2,B(ηA

2 Ĵ2)
]
− λaηA

[
Ĵ1, ∂2,B Ĵ2

]}
. (4.30)

Now (4.9) yields

{
(Q0)

aA, (S−)bB
}
Ĵ = 2π2δA

B

∫
d4η′ dα δ4(η′) εbcλ

c
1λ

a
2

[
Ĵ1, Ĵ2

]
, (4.31)

and the integral is antisymmetric under the shift of the integration variable

α 7→ π

2
− α ⇒ Λ1 ↔ Λ2, (4.32)

and does therefore vanish.

Last but not least we compute the anti-commutator of Q̄0 and S̄+ giving

{
(Q̄0)

ȧ
A, (S̄+)B

ḃ

}
Ĵ = −2π2

∫
d4η′ dα ε

ḃċ
λ̄ċ

1

{
− λ̄ȧ∂A

[
Ĵ1, η

B
2 Ĵ2

]

− ηB
2 λ̄ȧ

1

[
∂1,AĴ1, Ĵ2

]
− ηB

2 λ̄ȧ
2

[
Ĵ1, ∂2,AĴ2

]}
. (4.33)
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By means of (4.12), (4.13) we are left with an integral expression of the form

{
(Q̄0)

ȧ
A, (S̄+)B

ḃ

}
Ĵ = 2π2δB

A

∫
d4η′ dα ε

ḃċ
λ̄ċ

1λ̄
ȧ
2

[
Ĵ1, Ĵ2

]
= 0. (4.34)

The integral, however, again vanishes being antisymmetric under a shift of integration

variables:

α 7→ π

2
− α, η′ 7→ −η′ ⇒ Λ1 ↔ Λ2. (4.35)

4.5 Commutators between S and S̄

The anticommutator of two S vanishes in psu(2, 2|4) and the same is true for the tree

superconformal representation S0; similarly for S̄.

Let us now compute the corrections due to S− by acting on the source Ĵ(Λ). Straight-

forward evaluation yields

{(S0)aB , (S−)cD}Ĵ = −2π2

∫
dα εac sin2 α

{
∂1,B Ĵ1, ∂2,DĴ2

}

− 2π2

∫
dα εceλ

e sinα cos2 α
{
∂1,a∂1,B Ĵ1, ∂2,DĴ2

}

+ 2π2

∫
dα εceλ

e sin2 α cos α
{
∂1,B Ĵ1, ∂2,a∂2,DĴ2

}

− 2π2

∫
dα εac sinα cos α

[
Ĵ1, ∂2,B∂2,DĴ2

]

− 2π2

∫
dα εceλ

e sin3 α
[
Ĵ1, ∂2,a∂2,B∂2,DĴ2

]

+ 2π2

∫
dα εceλ

e sin2 α cos α
[
∂1,aĴ1, ∂2,B∂2,DĴ2

]
. (4.36)

The expansion of the anticommutator {SaB ,ScD} contains the above anticommutator

symmetrised over the pairs aB and cD. Note that each term in the above expression is

manifestly antisymmetric in a, c or in B,D. Thus the final term must be antisymmetric

in both a, c and B,D. We can make the antisymmetry in a, c manifest by pulling out εac.

After flipping some of the integral regions, α 7→ 1
2π − α, and rearranging some terms for

later convenience, we obtain for {(S0)aB , (S−)cD} + {(S0)cD, (S−)aB}

. . . = π2εac

∫
dα (cos2 α − sin2 α)

{
∂1,BĴ1, ∂2,DĴ2

}

+ π2εac

∫
dα sin α cos α

{
cot α(2λe

1∂1,e + 1)∂1,B Ĵ1, ∂2,DĴ2

}

+ π2εac

∫
dα sin α cos α

{
∂2,B Ĵ1,− tan α(2λe

2∂2,e + 1)∂2,DĴ2

}

− π2εac

∫
dα 2 sin α cos α

[
Ĵ1, ∂2,B∂2,DĴ2

]

− π2εac

∫
dα sin2 α

[
cot α(2λe

1∂1,e + 2)Ĵ1, ∂2,B∂2,DĴ2

]

− π2εac

∫
dα sin2 α

[
Ĵ1,−2 tan αλe

2∂2,e∂2,B∂2,DĴ2

]
(4.37)
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We would like to recast all these integrands in the form of a total derivative w.r.t. α. To

this end we notice that terms like λe∂eĴ do appear in ∂αĴ . Conversely, contributions of

the sort λ̄ė∂̄1,ė and ηE∂1,E which are also part of ∂αĴ1,2 to not appear. To resolve this

problem we can make use of the identity

(λe∂e − λ̄ė∂̄ė − ηE∂E + 2)Ĵ = 0. (4.38)

It holds by virtue of the definition (2.17) of Ĵ (total derivative) and it represents the

central charge condition CĴ = 0. This is also the reason why we started by acting on

Ĵ representing the most general function with the property CĴ = 0; our derivation only

works for physical representations and the algebra closes only on when the central charge

vanishes. The derivatives of Ĵ1,2 w.r.t. α thus yield

dĴ1

dα
= cot α(λe

1∂1,e + λ̄ė
1∂̄1,ė + ηE

1 ∂1,E)Ĵ1 = cot α(2λe
1∂1,e + 2)Ĵ1,

dĴ2

dα
= − tan α(λe

2∂2,e + λ̄ė
2∂̄2,ė + ηE

2 ∂2,E)Ĵ2 = − tan α(2λe
2∂2,e + 2)Ĵ2. (4.39)

Notice that the term without derivatives is sensitive to the number of derivatives acting

on J . For each fermionic derivative the number 2 is decreased by one unit. Altogether we

can write

. . . = π2εac

∫
dα

d

dα

(
sin α cos α

{
∂1,B Ĵ1, ∂2,DĴ2

}
− sin2 α

[
Ĵ1, ∂2,B∂2,DĴ2

])

= −π2εac

[
Ĵ(Λ), ∂B∂DĴ(0)

]
= π2εac

[
∂B∂DĴ(0), Ĵ(Λ)

]
. (4.40)

This has the form of a field-dependent gauge transformation of the gauge covariant object

Ĵ(Λ) because it maps Ĵ(Λ) 7→ [X, Ĵ(Λ)] where X is the gauge variation parameter.

Finally we consider the anticommutator of two correction terms {(S−)aB , (S−)cD}.
We apply the sequence of two S− to a source term J(Λ)

(S−)cD(S−)aB Ĵ(Λ) = 4π4εaeεcfλeλf

∫
dα dβ sin αy

{
[Ĵy, ∂x,DĴx], ∂z,BĴz

}
(4.41)

− 4π4εaeεcfλeλf

∫
dα dβ sin α

zy2

x2 + y2

[
Ĵz, {∂y,B Ĵy, ∂x,DĴx}

]

− 4π4εaeεcfλeλf

∫
dα dβ sin α

zxy

x2 + y2

[
Ĵz, [Ĵy , ∂x,B∂x,DĴx]

]
.

Note that for the latter two lines we flipped the integration region α 7→ 1
2π −α in order to

achieve a common parametrisation. of Λx,y,z where λx = xλ, ηx = xη, etc., with

x = sinα cos β, y = sin α sin β, z = cos α. (4.42)

These are standard spherical coordinates and dα dβ sinα is the corresponding measure.

The integral is over the positive octant, x, y, z > 1, such that we can freely exchange the

coordinates x, y, z. In the first line we exchange y ↔ z, multiply by (x2 +y2)/(x2 +y2), and
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exchange x ↔ y for the part proportional to x2/(x2 + y2). Upon use of a Jacobi identity

on the second line the result reads

(S−)cD(S−)aB Ĵ(Λ) = 4π4εaeεcfλeλf

∫
dα dβ sin α

zy2

x2 + y2

{
[Ĵz , ∂y,DĴy], ∂x,B Ĵx

}
(4.43)

− 4π4εaeεcfλeλf

∫
dα dβ sin α

zy2

x2 + y2

{
[Ĵz, ∂y,B Ĵy], ∂x,DĴx

}

− 4π4εaeεcfλeλf

∫
dα dβ sin α

zxy

x2 + y2

[
Ĵz, [Ĵy , ∂x,B∂x,DĴx]

]
.

This expression is manifestly symmetric in a, c, but manifestly antisymmetric in B,D. The

anticommutator {(S−)cD, (S−)aB} thus vanishes.

In conclusion we find that {SaA,SbB} does not vanish for the interacting represen-

tation, but it closes onto a gauge transformation. Our proof depended crucially on the

assumption of vanishing central charge for all objects we act upon. Let us introduce the

generator of a gauge transformation with gauge parameter X

G[X] = π2

∫
d4|4ΛTr

(
[X,J(Λ)]J̌(Λ)

)
. (4.44)

Our final result reads {
SaA,SbB

}
= εabG[∂A∂BJ(0)]. (4.45)

We now turn to the commutator of two generators S̄ acting on a source Ĵ(Λ). We

consider the anti-commutator of S̄0 with S̄+ yielding

{
(S̄0)

B
ȧ , (S̄+)A

ḃ

}
Ĵ = − 2π2

∫
d4η′ dα ε

ḃċ
ηA
2

{
− λ̄ċ

1η
B
1

[
∂̄1,ȧĴ1, Ĵ2

]

− λ̄ċ
1η

B
2

[
Ĵ1, ∂̄2,ȧĴ2

]
+ ηB(∂̄ȧλ̄

ċ
1)[Ĵ1, Ĵ2] + ηBλ̄ċ

1∂̄ȧ[Ĵ1, Ĵ2]
}

.

(4.46)

Using (4.10), (4.11) this can be transformed to

{
(S̄0)

B
ȧ , (S̄+)A

ḃ

}
Ĵ = −2π2

∫
d4η′ dα ε

ḃċ
ηA
2

{
− λ̄ċ

1η
′B cot α [∂̄ȧĴ1, Ĵ2]

+ λ̄ċ
1η

′B tan α [Ĵ1, ∂̄ȧĴ2] + δċ
ȧη

B sin α [Ĵ1, Ĵ2]
}

. (4.47)

The relevant term for the commutator {S̄B
ȧ , S̄A

ḃ
} is the sum

{
(S̄0)

B
ȧ , (S̄+)A

ḃ

}
+
{
(S̄+)Bȧ , (S̄0)

A
ḃ

}
. (4.48)

We split the commutator into its symmetric and antisymmetric part

SBA
ȧḃ

=
{
(S̄0)

(B
ȧ , (S̄+)

A)

ḃ

}
, ABA = εȧḃ

{
(S̄0)

[B
ȧ , (S̄+)

A]

ḃ

}
,

{
(S̄0)

B
ȧ , (S̄+)A

ḃ

}
+
{
(S̄+)Bȧ , (S̄0)

A
ḃ

}
= εȧḃA

BA + SBA
ȧḃ

, (4.49)

where

X(AB) = XAB + XBA, X [AB] = XAB − XBA. (4.50)
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Expanding λ1 and η2 according to (3.12) and using antisymmetry under the shift

α 7→ π

2
− α , η′ 7→ −η′ , (4.51)

it is straightforward to show that the symmetric piece of (4.48) vanishes. The antisymmetric

part reads

ABAĴ = π2

∫
d4η′ dα

{
sin α (ηA

2 η′B − ηB
2 η′A)

[
cot α λ̄ċ[∂̄ċĴ1, Ĵ2] − tan α λ̄ċ[Ĵ1, ∂̄ċĴ2]

]

− 2 sin α (ηA
2 ηB − ηB

2 ηA)[Ĵ1, Ĵ2]
}

. (4.52)

Expanding η2 and using (anti-)symmetry of some parts of the integral under (4.51), this

can be written as

ABAĴ = π2

∫
d4η′ dα

{
− η′Aη′B

(
cot α λ̄ċ[∂̄ċĴ1, J2] − tan α λ̄ċ[Ĵ1, ∂̄ċĴ2]

)

+ (η′AηB − η′BηA)[Ĵ1, Ĵ2]
}

. (4.53)

We can now use an analogue of (4.39) for η′ 6= 0:

dĴ1

dα
= cot α(2λ̄ė

1∂̄1,ė + 2ηE
1 ∂1,E − 2)Ĵ1 −

1

sin α cos α
η′E∂′

E Ĵ1,

dĴ2

dα
= − tan α(2λ̄ė

2∂̄2,ė + 2ηE
2 ∂2,E − 2)Ĵ2 +

1

sin α cos α
η′E∂′

E Ĵ2. (4.54)

Replacing λ̄ċ∂̄ċ in (4.53) by means of (4.54) and making use of the identities

∫
d4η′ dα η′Aη′BηE

(
[∂′

E Ĵ1, Ĵ2] + [Ĵ1, ∂
′
E Ĵ2]

)
= −

∫
d4η′ dα η′[AηB][Ĵ1, Ĵ2], (4.55)

∫
d4η′ dα η′Aη′Bη′E

(
[∂E Ĵ1, Ĵ2] − [Ĵ1, ∂E Ĵ2]

)
=

∫
d4η′ dα η′Aη′B(tan α − cot α)[Ĵ1, Ĵ2],

(4.56)

we obtain

ABAĴ = −π2

∫
d4η′ dα

1

2
η′Aη′B

d

dα
[Ĵ1, Ĵ2] = π2

∫
d4η′ η′Aη′B [J(0, η′), J(Λ)] , (4.57)

which amounts to a gauge transformation, cf. (4.44).

We refrain from explicitly calculating {S̄+, S̄+} since the result for {S̄A
ȧ , S̄B

ḃ
} can

alternatively be obtained by conjugation of {SaA,SbB}:

{S̄A
ȧ , S̄B

ḃ
} = εȧḃG[∂̄A∂̄B J̄(0)], (4.58)

where J̄ is a complex conjugate source field depending on conjugate odd variables η̄A. The

latter are related to the original odd variables ηA through an odd Fourier transformation

(cf. section 3.2)

J̄(Λ̄) =

∫
d4η exp(ηAη̄A)J(Λ). (4.59)
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Converting back to the original source J we obtain

∂̄A∂̄B J̄(0) =

∫
d4η ηAηBJ(0, η) =

1

2

∫
d4η ηAηBηCηD∂C∂DJ(0) =

1

2
εABCD∂C∂DJ(0)

(4.60)

and thus

{S̄A
ȧ , S̄B

ḃ
} =

1

2
ε
ȧḃ

εABCDG[∂C∂DJ(0)]. (4.61)

Finally we should mention that the inclusion of negative-energy particles discussed in

section 3.3 leads to additional gauge transformation terms.

4.6 Commutators involving P and K

In order to evaluate the commutator of K and Q we can make use of Kaȧ = 1
4{SaB , S̄B

ȧ }
and the Jacobi identity to find

[
Kaȧ,Q

bA
]

= −1

4

[
{S̄B

ȧ ,QbA},SaB

]
− 1

4

[
{QbA,SaB}, S̄B

ȧ

]
. (4.62)

The algebra of supercharges ensures that the first term vanishes and that the second

term yields
[
Kaȧ,Q

bA
]

= −1

4

[
−δb

aR
A

B +
1

2
δb
aδ

A
BD, S̄B

ȧ

]
= δb

aS̄
A
ȧ . (4.63)

In other words this relation follows from consistency of the algebra and there is nothing to

be shown concerning the corrections to K. The commutators of K with Q̄ can be derived

analogously [
Kaȧ, Q̄

ḃ
A

]
= δḃ

ȧSaA. (4.64)

Finally, the commutator of K with P follows expressing the latter in terms of Q and Q̄ and

employing the Jacobi identity

[
Kaȧ,P

bḃ
]

=
1

4

[
Kaȧ, {QbA, Q̄ḃ

A}
]

=
1

4

{
QbA, [Kaȧ, Q̄

ḃ
A]
}

+
1

4

{
Q̄ḃ

A, [Kaȧ,Q
bA]
}
. (4.65)

By means of the identities above this results in

[
Kaȧ,P

bḃ
]

= δḃ
ȧL

b
a + δb

aL̄
ḃ
ȧ + δb

aδ
ḃ
ȧD (4.66)

as expected.

For evaluating the commutator between K and S, express K in terms of S and S̄ and

use the Jacobi identity to find

δC
A [Kaȧ,SbB ] =

[
{SaA, S̄C

ȧ },SbB

]
= −

[
{SbB ,SaA}, S̄C

ȧ

]
−
[
δC
BKbȧ,SaA

]
. (4.67)

By contracting once C with B and once C with A and taking a linear combination,

we obtain

[Kaȧ,SbA] =
1

15

[
{SbB ,SaA} − 4{SbA,SaB}, S̄B

ȧ

]
. (4.68)

Substituting the gauge transformation (4.45)

[
Kaȧ,SbA

]
=

1

3
εab

[
G[∂A∂BJ(0)], S̄B

ȧ

]
= εabG[∂A∂̄ȧJ(0)]. (4.69)
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which amounts to a new gauge transformation G[∂A∂̄ȧJ(0)].

For the commutator between K and S̄ one finds in complete analogy with (4.67)

δC
A [Kaȧ, S̄

B
ḃ

] =
[
{SaA, S̄C

ȧ }, S̄B
ḃ

]
= −

[
{S̄C

ȧ , S̄B
ḃ
},SaA

]
−
[
δB
AK

aḃ
, S̄C

ȧ

]
. (4.70)

Again taking a linear combination of the two possible contractions of this equation and

using (4.61), we obtain again a gauge transformation

[
Kaȧ, S̄

A
ḃ

]
=

1

15

[
{S̄A

ȧ , S̄B
ḃ
} − 4{S̄B

ȧ , S̄A
ḃ
},SaB

]
=

1

6
εȧḃε

ABCD[G[∂C∂DJ(0)],SaB ]

= −1

6
ε
ȧḃ

εABCDG[∂a∂B∂C∂DJ(0)] . (4.71)

Finally, using the above results, we find that also [Kaȧ,Kbḃ
] amounts to a

gauge transformation:

[
Kaȧ,Kbḃ

]
=

1

4

[
Kaȧ, {SbA, S̄A

ḃ
}
]

=
1

4

{
S̄A

ḃ
, [Kaȧ,SbA]

}
+

1

4

{
SbA, [S̄A

ḃ
,Kaȧ]

}

=
1

4
εab

{
S̄A

ḃ
,G[∂A∂̄ȧJ(0)]

}
+

1

24
ε
ȧḃ

εABCD
{
SbA,G[∂a∂B∂C∂DJ(0)]

}

= εabG[∂̄ȧ∂̄ḃJ(0)] +
1

24
εȧḃε

ABCDG[∂a∂b∂A∂B∂C∂DJ(0)] (4.72)

To conclude we summarise the algebra relations closing onto gauge transforma-

tions (4.44)

{SaA,SbB} = εabG[∂A∂BJ(0)],

{S̄A
ȧ , S̄B

ḃ
} =

1

2
ε
ȧḃ

εABCDG[∂C∂DJ(0)],

[Kaȧ,SbA] = εabG[∂A∂̄ȧJ(0)],

[Kaȧ, S̄
A
ḃ
] = −1

6
ε
ȧḃ

εABCDG[∂a∂B∂C∂DJ(0)],

[Kaȧ,Kbḃ] = εabG[∂̄ȧ∂̄ḃJ(0)] +
1

24
εȧḃε

ABCDG[∂a∂b∂A∂B∂C∂DJ(0)]. (4.73)

The commutators of P with the supercharges follow analogously to the above com-

mutators with K. Note that momentum conservation is not quite sufficient to show the

correct closure of these commutators.

5 Exact superconformal invariance

We would now like to extend the previous considerations, section 3.1 and section 3.2, to

the case of general tree amplitudes. We expect to find the obvious generalisation

J0An,k + J+An−1,k + J−An−1,k−1 + J+−An−2,k−1 = 0. (5.1)

This gives rise to the pattern of relations shown in figure 8 whereby a given amplitude is

related to higher point amplitudes by the action of the deformed generators. As we have

seen explicitly in the cases of MHV and MHV amplitudes, the anomalous terms arise from
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Figure 8. Illustration of the recursive action of the deformed generators.

collinear singularities seen by J0 which are then removed by J+ or J− as appropriate. In fact

it is well known that the collinear behaviour is governed by the universal splitting functions

and so we expect that the action of the deformed generators is easily extended to the most

general case. There are in principle contributions from other kinematic singularities which

would need to be considered however none of these turn out to be relevant for the action of

the generators. We start our discussion with the concrete example of the six-point NMHV

amplitude which as we will see has, in addition to the collinear singularities, multi-particle

poles as well as apparent “spurious” (non-adjacent) singularities which are non-physical

and merely due to the methods for deriving the expressions.

5.1 Six-point NMHV amplitudes

For the case, A6,3 = ANMHV
6 , that is to say, of six-point NMHV amplitudes, we expect that

the action of S on the amplitude should be given by,

S0A
NMHV
6 + S−AMHV

5 = 0 , (5.2)

where we note that the generator relates the six-point NMHV amplitude to the five-point

MHV. We follow [39] (see also appendix A for relevant definitions) and write the six point

NMHV amplitude as

ANMHV
6 = AMHV

6

(
1

2
R146 + cyclic

)
(5.3)

where there are several representations of R146. One that is particularly useful is

R146 = c146δ
4(Ξ146) (5.4)

where

c146 =
〈34〉〈56〉

x2
14〈1|x14|4]〈3|x36|6](〈45〉〈61〉)3 [45][56]

,

ΞA
146 = 〈61〉〈45〉(ηA

4 [56] + ηA
5 [64] + ηA

6 [45]) , (5.5)
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which is a specific example (after a little manipulation) of the general formula

Rpqr = cpqrδ
4(Ξpqr) ,

cpqr =
〈q − 1, q〉〈r − 1, r〉

x2
qr〈p|xprxrq−1|q − 1〉〈p|xprxrq|q〉〈p|xpqxqr−1|r − 1〉〈p|xpqxqr|r〉

,

ΞA
pqr = −〈p|

[
xpqxqr

r−1∑

i=p

|i〉ηA
i + xprxrq

q−1∑

i=p

|i〉ηA
i

]
. (5.6)

Now we want to consider the action of S on this amplitude and specifically the anomaly

contribution coming from the action of ∂ on 1/λ̄ terms in the Rpqr terms. As always one

can use cyclicity to consider a specific leg, for concreteness we consider the λ̄6 terms. There

are several different possible contributions to the anomaly terms:

1. from multi-particle singularities which occur when linear combinations of momenta

such as (p4 + p5 + p6) become null. These singularities are of the form
∑〈jk〉[jk]

and so do not contribute to the anomaly.13

2. from singularities of the form 〈3|x46|6] which occur when p4 + p5 is any linear com-

bination of p3 and p6. In fact these singularities are spurious and cancel when we

consider the full amplitude as can be explicitly seen in e.g. [20, 22, 54, 55]. For a

recent discussion of these singularities in the twistor space approach see [11].

3. collinear singularities due to [56] type terms.

It is this last class that actually gives rise to the relevant physical singularities gener-

ating the anomaly terms and that we will consider. For completeness the full R terms are

1

2
(R146 + R251 + R362) =

1

2

[ 〈34〉〈56〉〈61〉〈45〉
x2

14〈1|x14|4]〈3|x36|6][45][56]
δ4 (η4[56] + η5[64] + η6[45])

+
〈45〉〈61〉〈12〉〈56〉

x2
25〈2|x25|5]〈4|x42|1][56][61]

δ4 (η5[61] + η6[15] + η1[56])

+
〈56〉〈12〉〈23〉〈61〉

x2
36〈3|x36|6]〈5|x53|2][61][12]

δ4 (η6[12] + η1[26] + η2[61])

]

(5.7)

and the anomaly term from the [61] denominator factors in the second and third lines, and

from the [56] terms in the first and second lines give

(S0)aBANMHV
6 =

π

2

∫ 6∏

k=1

d4|4Λk Tr([J6, ∂1BJ1]J2J3J4J5)
δ4(P6)δ

8(Q6)

〈12〉〈23〉〈34〉〈45〉〈56〉 δ2(〈61〉)εabλ
b
6

[ 〈45〉〈56〉〈12〉
x2

25〈2|x35|5]〈4|x42|1][56]
δ4(η6[15] + η1[56])

+
〈56〉〈12〉〈23〉

x2
36〈3|x46|6]〈5|x53|2][12]

δ4(η6[12] + η1[26])

]
. (5.8)

13At tree level it is safe to assume a principal part prescription for propagators and hence there are no

further subtleties.
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Using manipulations identical to previous sections this can be rewritten as

(S0)aBANMHV
6 = 2π2

∫ 5∏

k=2

d4|4Λkd
4|4Λ′

1dαd4η′
δ4(P ′

5)δ
8(Q′

5)

〈1′2〉〈23〉〈34〉〈45〉〈51′〉δ
4(η′)εabλ

b
6

× Tr([Ĵ6, ∂1,BJ1]J2J3J4J5) , (5.9)

where we have evaluated the δ2(〈16〉) and made use of the definitions λ1 = λ′
1 sin α, λ6 =

λ′
1 cos α, η6 = η′1 sinα + η′ cos α, η1 = η′1 cos α − η′ sin α. This is consistent with S−AMHV

5

using the expression (3.24) calculated from the action of S on MHV amplitudes and thus we

see that (5.2) does indeed hold. We now calculate the action of the undeformed generator

S̄ on the six-point NMHV amplitude. In this case we expect to find that

S̄0A
NMHV
6 + S̄+ANMHV

5 = 0 . (5.10)

It is convenient to choose a slightly different writing of the six-point amplitude using the

formula (5.6)

ANMHV
n = AMHV

n

∑

2≤s,t≤n−1

Rnst , (5.11)

where we sum over all s and t such that s 6= t+1 mod n. For the specific case of six-points

we take

ANMHV
n = AMHV

n (R624 + R625 + R635) (5.12)

and look for anomalous terms arising from the action of ∂̄ on inverse powers of λ. We use

cyclic symmetry to consider only λ6 and as in the previous case there are several possible

sources for anomalous contributions, however, and again as in the previous discussion only

those singularities arising from collinear singularities are relevant. Noting that R624 ∼ 〈61〉,
R625 ∼ 〈65〉〈61〉 and R635 ∼ 〈65〉 we see that the only contribution from the singularity at

λ6 ∝ λ5 comes from the R624 term and similarly the only contribution from the λ6 ∝ λ1

singularity comes from the R635 term. Thus we find,

(S̄0)
A
ȧ ANMHV

6 = −π

∫ 6∏

k=1

d4|4Λk Tr(J1 . . . J6)δ
4(P )δ8(Q)ηA

6

×
(

δ2(〈56〉) εȧḃλ̄
ḃ
5R624

〈61〉〈12〉 . . . 〈45〉 − δ2(〈16〉) εȧḃλ̄
ḃ
1R635

〈12〉 . . . 〈56〉

)

. (5.13)

Evaluating the delta functions, using δ8(Q′)R1′24 = δ8(Q′)R1′35, relabelling the momenta

and removing the phases we end up with

(S̄0)
A
ȧ ANMHV

6 = −2π2

∫ 5∏

k=2

d4|4Λkd
4|4Λ′

1dαd4η′ Tr([Ĵ6, J1] . . . J5)

× δ4(P ′)δ8(Q′)ηA
1

(
ε
ȧḃ

λ̄ḃ
6R1′24

〈1′2〉 . . . 〈51′〉

)
(5.14)

which is again consistent with the previous expressions for S̄+.
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5.2 General tree amplitudes and splitting functions

It is useful to analyse the necessary behaviour of generic amplitudes so that our above

results of section 5.1 generalise. As discussed, the important behaviour occurs when two

particles become collinear. For concreteness we consider the case where particle n becomes

collinear with particle 1 with the scaling

λn → eiϕλ′
1 sin α, λ1 → λ′

1 cos α (5.15)

and the redefinitions

ηn = e−iϕη′1 sin α + η′ cos α, η1 = η′1 cos α − eiϕη′ sin α. (5.16)

We postulate that a generic amplitude scales as

An,k(Λ1, . . . , Λn) |1||n ≃ e−iϕ secα csc α

〈n1〉 An−1,k(Λ
′
1, Λ2, . . . , Λn−1)

+
eiϕ secα csc α

[n1]
δ4(η′)An−1,k−1(Λ

′
1, Λ2, . . . , Λn−1)

+ finite terms, (5.17)

and with similar scaling in all other collinear limits. Particular collinear limits of superspace

amplitudes were analysed in [18] using the BCFW recursion relations described below. Now

assuming that the anomaly only receives contributions from the collinear singularities and

that they scale as above it is straightforward to show that

(S̄0)
A
ȧ A[J ] = −2π2

∫ ∑

n

n−1∏

k=2

d4|4Λkd
4|4Λ′

1 dα d4η′ ε
ȧḃ

λ̄ḃ
nηA

1 An−1,k(Λ
′
1, . . . , Λn−1)

× Tr([Ĵn, J1]J2 . . . Jn−1) (5.18)

and similarly

(S0)aAA[J ] = 2π2

∫ ∑

n

n−1∏

k=2

d4|4Λkd
4|4Λ′

1 dαd4η′ εabλ
b
nδ4(η′)An−1,k−1(Λ

′
1, . . . , Λn−1)

× Tr([Ĵn, ∂1,AJ1]J2 . . . Jn−1) (5.19)

which are both consistent with the expressions from the previous sections (as before we

have removed the phases so that λn = λ′
1 sinα, ηn = η′1 sin α + η′ cos α and by passing to

the projection Ĵn).

As previously mentioned, a convenient way to study arbitrary tree level amplitudes

is to make use of the BCFW recursion relations [13] and for our purposes the superspace

versions [14–17] are particularly useful. To verify the above collinear structure (5.17), one

does not need to explicitly solve the recursion relations, as in [18], but can simply make

use of an inductive argument with the initial step being provided by the MHV and MHV

amplitudes considered previously. In the derivation of the BCFW relations one performs

complex shifts of two of the external legs, say j and k, and studies the resulting singularities.
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Figure 9. Schematic of the on-shell recursion relation for a general tree-level amplitude. The

shifted momenta are denoted by thickened legs and the sum is over the product of subamplitudes

which split the shifted legs.
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Figure 10. Illustration of the three positions of collinear legs in the recursion relations for the

collinear legs chosen to be different than the shifted legs.

The resulting poles relate the amplitude to the sum over products of subamplitudes with the

momenta suitably shifted, shown schematically in figure 9. Following the usual procedure

we shift ˆ̃λj = λ̃j + zrsλ̃k, and λ̂k = λk − zrsλj ; In the superspace version we also shift

the Graßmann variables so that η̂j = ηj + zrsηk. The resulting recursion relation can be

written as

An(Λ1, . . . , Λn) =

∫
d4Prs

∫
d4ηrs

∑

r,s

AL
1

P 2
rs

AR. (5.20)

with14

AL = An−(s−r)+1(. . . , Λ̂j , . . . , Λr, Λ̄rs, Λs+1),

AR = As−r+1(Λs, Λrs, Λr+1, . . . , Λ̂k, . . . ). (5.21)

14For this formula to be valid we must include in the sum three-point functions which are non-vanishing

for complex momenta. We must thus extend our earlier definition of An to be A3 = A3,1 + A3,2 for this

special case.
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The shift parameter zrs is determined by demanding the subamplitudes in each term to be

on-shell. This is ensured to be the case if

(P̂rs)
2 =

(
s∑

ℓ=r+1

λℓλ̃ℓ − zrsλjλ̃k

)2

= 0. (5.22)

We now want to consider the resulting behaviour as two legs become collinear and to show

that if all n-point amplitudes have the required behaviour, all the (n+1)-point amplitudes

will too. This is simply a rewriting of the known universality of the splitting functions

governing the collinear limit, [55, 56], to the superspace notation via the BCFW recursion

relations. In fact if the legs becoming collinear, again let us choose n and 1, are different

than the shifted legs j and k, it is easy to see that the recursion relation (5.20) guarantees

that this will be the case. There are three separate cases, as shown in figure 10; when

both collinear legs are on the left hand subamplitude AL which has the correct scaling by

assumption, secondly when the collinear legs are on different subamplitudes so there are

no singularities and this term is subleading, finally when the two collinear legs are on the

right hand subamplitude AR which again by assumption has the correct scaling.

6 Conclusions and outlook

In this paper we have considered superconformal invariance of scattering amplitudes in

N = 4 SYM at tree level. As the model is exactly superconformal, classically as well as

quantum mechanically, observables ought to respect this symmetry. However, scattering

amplitudes display collinear singularities which obscure the symmetries: At loop level

they cause IR divergences which superficially break conformal symmetry. Further scrutiny

reveals that collinear singularities even break naive conformal symmetry at tree level. This

breakdown is easily overlooked because it only happens for singular configurations of the

external momenta. In order to understand the symmetries of scattering amplitudes at loop

level, it is crucial to first obtain complete understanding at tree level.

Here we have proposed to deform the free superconformal generators J0 to classical

interacting generators, cf. figure 7,

J = J0 + J+ + J− + J+−. (6.1)

The correction terms cure the breaking of superconformal symmetry at collinear singular-

ities. They are what is known as non-linear realisations of symmetry; as operators they

act linearly, but they transform one field into several fields. For scattering amplitudes it

means that anomalous terms in the action of the free generators are compensated by the

interacting generators acting on amplitudes with fewer legs.

We should note that the structure of singularities in tree level scattering amplitudes is

well understood. In general they correspond to internal propagators going on shell meaning

that the overall momentum of a subset of the external particles becomes light-like. They can

be classified into two-particle and multi-particle singularities: Multi-particle singularities

are codimension-one and do not lead to a conformal anomaly. Conversely, two-particle
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singularities in Minkowski signature require the particles to be collinear. Collinearity is a

codimension-two momentum configuration which leads to the conformal anomaly. Collinear

singularities can be expressed through splitting functions times an amplitude with one leg

less. The conformal properties of splitting functions are understood. It is also known

how certain soft momentum limits of the amplitudes are related to conformal symmetry.

Arguably our proposal constitutes a reformulation of what has been known about conformal

symmetry for a long time. In fact, the correction terms in (6.1) can be understood as the

action of the free conformal generators on the splitting functions (5.17). Nevertheless we

believe that it is a useful formalisation of classical conformal symmetry in view of extensions

to the loop level.

Importantly we have shown that the deformations form a proper representation of

psu(2, 2|4) superconformal symmetry. Actually, the algebra does not close exactly but

only modulo field-dependent gauge transformations. This behaviour is not unexpected,

it is rather very common in gauge field theories. Here only the commutators of special

superconformal generators S, S̄,K yield gauge transformations. In a way this appears to be

the dual of the very non-linear terms in classical interacting gauge covariant supersymmetry

transformations, Q, Q̄,P. The latter act on the fields while our representation acts on the

dual sources noting that an algebra automorphism maps between S, S̄,K and Q, Q̄,P.

An important insight is that conformal invariance not only constrains the functional

form of the amplitudes, but it also constrains their singularities. In particular, invariance of

the singularities requires cancellations between amplitudes with different numbers of legs,

cf. figure 8. Hence, it does not make sense to consider an amplitude with a fixed number of

legs on its own, but only all amplitudes at the same time, e.g. in the form of a generating

functional (2.14). Therefore symmetry considerations can to some extent replace field

theory computations which may become a very beneficial feature at higher loops.

Symmetries become even more powerful in the planar limit where the superconformal

algebra apparently extends to an infinite-dimensional Yangian algebra. Yangian symmetry

leads to further constraints which prohibit certain superconformal invariants. In fact, only

a few invariants (up to anomalies) of the free Yangian are known [15, 39, 43]. The tree

level amplitude can be written as a linear combination of these, but the coefficients are

undetermined by symmetry. Although we have not shown this explicitly, we are confident

that full classical Yangian symmetry (see [57] for interacting Yangians)

Ĵα =
1

2
fβγ

α

∑

1≤k<ℓ≤n

Jk,βJℓ,γ , (6.2)

where Jk,β are the classical generators in (6.1), leads to a unique invariant which is pre-

cisely the tree scattering amplitude. The point is that the naive invariants of the free

Yangian have spurious singularities which are due to some decomposition of the amplitude

into partial fractions. Physicality requirements can be used to argue for the right linear

combination. Our approach is different in that we merely rely on symmetry: Spurious

singularities are seen by the free generators, but they are not cancelled by any interac-

tion terms. Hence they should cancel among themselves leaving only the correct physical

singularities. In fact, unique determination of the tree level amplitude is an essential pre-
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requisite for complete algebraic determination of loop amplitudes: Tree-level invariants

form the space of homogeneous solutions to the covariance equations at loop level, i.e. they

can be added freely to loop amplitudes with arbitrary coefficients. If there is only a single

invariant, it must be the physical tree-level amplitude. Adding it to the loop amplitude

can be absorbed by changing the overall prefactor and redefining the coupling constant,

both of which cannot be determined by algebraic means in any case. If there are multiple

invariants, only one of them can be identified with the tree-level amplitude and thus the

loop amplitude cannot be determined algebraically.

Note that we can easily argue for complete Yangian invariance of the tree scattering am-

plitude. According to (6.2) the level-one momentum generator P̂ (also known as the special

dual conformal generator) relies only on the superconformal generators P,Q, Q̄,L, L̄,D.

All of these are free from holomorphic anomalies and receive no classical corrections, thus

P̂ equals its free representation for which invariance was shown in [15, 39, 43]. All the

other Yangian generators are obtained from commutators with superconformal generators.

Note that for completeness one should prove that (6.2) satisfies the Serre relations of the

Yangian algebra. This would show that the closure of the algebra generated by (6.1), (6.2)

is indeed a Yangian and not some other infinite-dimensional algebra.

Again, our interacting representation of the Yangian at tree level does not add much to

what is known already. It would demonstrate its full power only when quantum corrections

are included: If there is a unique invariant at tree level, we expect the same to hold true at

loop level. This would imply a complete determination of scattering amplitudes in planar

N = 4 SYM at all loops. The price to be paid is the determination of corrections to

the Yangian generators. This may or may not be simpler than determining the amplitude

itself. Yet the formulation as a symmetry could ultimately enable certain non-perturbative

statements, e.g. on the structure of singularities.

The possibility of a unique Yangian invariant scattering amplitude is also exciting

for the spin chain point of view. When considered as a spin chain state, the scattering

amplitude would be a representation of the unit operator of the quantum mechanical spin

chain model. A Bethe ansatz based on this vacuum state could lead to a derivation of

the exact spectrum of planar anomalous dimensions alternative to the proposal in [58] and

follow-up works.

There are several issues deserving further investigation:

We did not consider conformal inversions in our work. These can be used to define

conformal boosts as shifts conjugated by conformal inversions. Free shifts do not receive

classical corrections, consequently conformal inversions should carry those corrections nec-

essary for conformal boosts in this picture. It is however not a priori guaranteed that

conformal inversions are exact symmetries. Are scattering amplitudes invariant under the

superconformal group including inversions or merely under the component connected to

the identity?

It would be desirable to prove that classical Yangian symmetry determined the tree

scattering amplitude uniquely. Can one show that there is only a single invariant?

The proposed corrections to superconformal symmetry are based on the holomorphic

anomaly which requires a spacetime with (3, 1) Minkowski signature. Many works on tree
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level scattering amplitudes make use of a twistor transform which can is most conveniently

defined in (2, 2) signature. It would be interesting to find out whether our results can also

be formulated for this split signature. Clearly, the holomorphic anomaly would have to

be replaced by something else. One could contemplate postulating the equivalent of (3.5).

Alternatively one could try to find different anomalous terms in the action of the free

generators. In the spinor helicity framework it is not immediately clear how to define

such terms but in the twistor space representation the various signum factors [9, 10] do

give rise to singular contributions when two spinors become collinear. Cancellations then

might involve also three-leg and two-leg amplitudes in this signature. Moreover, we expect

that N−1MHV amplitudes would play a role; like the three-leg amplitudes these have a

restricted support in momentum space.

The interacting representation of superconformal symmetry does not rely on the pla-

nar limit or on integrability and therefore one may wonder if similar formulations can

be obtained for field theories with less supersymmetry. In particular, all tree scattering

amplitudes in pure N < 4 supersymmetric gauge theories (including pure Yang-Mills at

N = 0) equal the restriction of the N = 4 counterparts. Also the truncation of the classi-

cal psu(2, 2|4) representation to su(2, 2|N ) is consistent. It is a proper representation that

annihilates all truncated amplitudes. This appears to work independently of the conformal

anomaly at one loop due to a non-trivial beta-function. It is however not immediately

clear whether one can add massless matter to N < 4 field theories and still obtain a proper

representation of conformal symmetry which annihilates all tree amplitudes.

Finally, we would like to mention the possibility of establishing a similar framework

for N = 8 supergravity. In this model the E7(7) global symmetry has features reminiscent

of the special conformal symmetries including relations between amplitudes with different

numbers of legs, the behaviour in collinear and soft limits (see e.g. [16]) as well as the

structure of generators and their algebra, (see e.g. [59]).

Acknowledgments

We are grateful to Nima Arkani-Hamed, Lars Brink, James Drummond, Johannes Henn,

Jared Kaplan, Lionel Mason, Jan Plefka, Radu Roiban, David Skinner, Emery Sokatchev

and Matthias Staudacher for interesting discussions and for sharing useful insights.

N.B. thanks the IPPP Durham for hospitality during the workshop “Amplitudes 09” which

provided the inspiration for this work. T.B., N.B. and F.L. would like to thank the Galileo

Galilei Institute for Theoretical Physics for hospitality during the workshop “New Perspec-

tives in String Theory” where part of this work was carried out.

A Conventions

• We will mostly consider the (3, 1) signature (−+++). The positive and negative

chirality spinors are denoted by λa, a = 1, 2 and λ̃ȧ, ȧ = 1, 2.

– 39 –



J
H
E
P
1
1
(
2
0
0
9
)
0
5
6

• We have for the antisymmetric two tensor: ε12 = −ε21 = 1 and ε21 = −ε12 = 1

so that εabεbc = δa
c . The antisymmetric four tensor εABCD is defined such that

ε1234 = ε1234 = +1.

• We define the positive chirality spinor brackets 〈λ1, λ2〉 = εabλ
a
1λ

b
2 and the negative

chirality brackets [λ̃1, λ̃2] = ε
ȧḃ

λ̃ȧ
1λ̃

ḃ
2. The same conventions apply for the abbrevia-

tions 〈ij〉 and [ij].

• A four-vector pµ can be thought of as a bi-spinor paȧ = (σµ)aȧpµ which for light-like

vectors can be written as paȧ = λaλ̃ȧ for some spinors λ, λ̃. In (3, 1) signature de-

manding that pµ be real implies that λ̃ = ±λ̄. When pµ is a particle four-momentum,

the sign corresponds to positive and negative energy.

• It is useful to introduce the dual variables (xi)
aȧ, i = 1, . . . , n defined by xi−xi+1 = pi

satisfying the condition xn+1 = x1. We make use of the shorthand xrs = xr − xs =∑s−1
i=r pi. As well as

〈p|xmn|q] = λa
p(xmn)aȧλ̃

ȧ
q

〈p|xmnxkl|q〉 = λa
p(xmn)aȧ(xkl)

ȧbεbcλ
c
q (A.1)

• For treating complex variables the convention for the measure is d2z = dxdy where

z = x + iy. We define derivatives ∂ and ∂̄ so that ∂z = 1 and ∂̄z = 0 etc. We

also define ∫
d2z δ2(z) = 1 (A.2)

so that δ2(z) = δ(x)δ(y). This implies for the holomorphic anomaly that15

∂

∂z̄

1

z
= πδ2(z). (A.3)

In other words, 1/z is the Green’s function for the differential operator ∂/∂z̄. This

can be easily seen, and the overall coefficient fixed, by making use of Green’s theorem
∫

R
d2z

∂

∂z̄

1

z
= − i

2

∮

∂R
dz

1

z
. (A.4)

• We assume that we are in (3, 1) signature and we treat the λa’s as complex variables

so that d4λ = d2λ1 d2λ2. In particular it is defined so that

δ2(〈λ, µ〉) =

∫
d2z δ4(λ − zµ) (A.5)

and∫
d4λ δ2(〈λ, µ〉)f(λ, λ̄) =

∫
d4λd2z δ4(λ − zµ)f(λ, λ̄) =

∫
d2z f(zµ, z̄µ̄). (A.6)

• Graßmann integration is defined as
∫

dη = 0 and
∫

dη η = 1. The odd delta function

is consequently defined as δ(η) = η. Integral over all four ηA’s is defined as d4η =

dη1 dη2 dη3 dη4 and the odd delta function such that
∫

d4η δ4(η) = 1.

• The superspace integration measure, d4|4Λ, is defined to be d4|4Λ = d4λd4η.

15For distributions and this particular relation see e.g. [60].
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